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Abstract—Architecting Cyber-Physical Systems is not trivial
since their intrinsic nature of mixing software and hardware
components poses several challenges, especially when the physical
space is subject to dynamic changes, e.g., paths of robots suddenly
not feasible due to objects occupying transit areas or doors being
closed with a high probability. This paper provides a quantitative
evaluation of different architectural patterns that can be used
for cyber-physical systems to understand which patterns are
more suitable under some peculiar characteristics of dynamic
spaces, e.g., frequency of obstacles in paths. We use stochastic
performance models to evaluate architectural patterns, and we
specify the dynamic aspects of the physical space as probability
values. This way, we aim to support software architects with
quantitative results indicating how different design patterns
affect some metrics of interest, e.g., the system response time.
Experiments show that there is no unique architectural pattern
suitable to cope with all the dynamic characteristics of physical
spaces. Each architecture differently contributes when varying
the physical space, and it is indeed beneficial to switch among
multiple patterns for an optimal solution.

Index Terms—Cyber-Physical Systems,
Space, Software Performance Engineering.

Dynamic Physical

I. INTRODUCTION

Cyber-Physical Systems (CPS) have been defined as an
evolution of embedded systems, mainly differentiating for the
interplay between software and hardware components that
inevitably triggers new challenges [1f, [2]. When focusing
on software architectures [3]]—[5]], CPS resulted to attract the
attention of the research community, and several method-
ologies recently emerged to deal with this domain [[6]-[9].
However, to the best of our knowledge, only a few approaches
provide a quantitative evaluation when architecting CPS. For
instance, in [10] a framework is proposed for simulating CPS
to derive some metrics of interest (e.g., energy consumption).
This experience is later exploited for the Internet of Things
(IoT) domain in [[11]], where probabilistic model checking is
adopted to verify Quality-of-Service (QoS) requirements.

In this paper, we focus on the model-based performance
analysis of CPS. We aim to investigate if software performance
engineering techniques [12] can efficiently support software
architects in the task of specifying the most suitable (from a
performance perspective) design alternative. The target domain
is represented by the physical space subject to dynamic
changes, and we are interested to understand to what extent
changes in the operational environment impact the CPS under

Catia Trubiani
Gran Sasso Science Institute
L’ Aquila, Italy
catia.trubiani @ gssi.it

analysis. For example, let us consider that there are some
objects (e.g., a tray transporting medicines in a hospital)
moving and occupying transit areas. This might disable the
feasibility of some paths for automated machines that were
supposed to cross such areas. Another scenario is represented
by doors and windows that are closed or open with a cer-
tain probability. This affects the time required by robots to
deliver goods or by drones to extinguish a fire, e.g., within
a certain building. All these scenarios share the management
of probabilistic parameters in the specification of the physical
space, and this may largely affect the choice of the underlying
software architecture. In the literature, the evolution of cyber-
physical spaces is tackled by some approaches, e.g., [13]—
[15]], however, the verification of these systems mainly consists
of reachability properties, whereas aspects related to software
architectural patterns are neglected. The novelty of this paper
relies on embedding architectural alternatives as part of the
problem specification, to investigate the most suitable design
alternatives under different space dynamics.

Starting from the specification of multiple architectural
patterns that enable the self-adaption of CPS [16], we build
performance models that are representative of the architectural
alternatives. This way, we are interested to provide a quanti-
tative evaluation of the feasible architectural alternatives, so
that it is possible to early identify (and prevent) performance
issues in CPS. We consider three different architectural pat-
terns: (i) centralized pattern in which all the cyber entities
communicate the status of the physical space with a central
coordinator; (ii) semi-decentralized pattern which introduces
a set of cyber entities acting as local coordinators for a sub-
group of other entities, most likely those occupying spaces
adjacent to the physical changes under analysis; (iii) fully-
decentralized pattern in which each cyber entity is in charge
of verifying the status of the space, and it is autonomous in
the process of making decisions. Our experiments show that
there is not a unique architectural pattern suitable to cope with
performance-related requirements, pros and cons arise for all
of them, since peculiarities of the space come into play.

Summarizing, the contributions of this paper are: (i) the
specification of performance models expressing the peculiar-
ities of cyber-physical dynamic spaces; (ii) the modelling
and the analysis of different architectural patterns and their
experimentation on realistic scenarios; (iii) empirical evidence



on the benefit of early identifying (and prevent) performance
issues for systems subject to dynamic cyber-physical spaces.
Performance models and replication data are publicly available
at the following link: http://doi.org/10.5281/zenodo.4570445

II. MOTIVATING SCENARIO

In this section, we introduce a smart hospital case study as
a motivating scenario, and we use it as a running example
of a cyber-physical dynamic space throughout the paper. It is
inspired by the recent trend of designing intelligent systems
for tracking and monitoring COVID-19 patients, as well as
smart sanitizing For instance, autonomous robots can help in
some healthcare systems, such as virtual clinics, smart guard,
and in providing medicines, thermometers, disinfectants, and
cleaning supplies. Besides, robots can sanitize rooms by
traversing physical spaces hosting patients with diseases, and
using random path planning algorithms.

We start with a brief description of the static structure of
the cyber-physical space and then consider its dynamics, i.e.,
possible ways in which space may change over time. Our
interest is in understanding the impact of dynamic spaces on
the performance evaluation of different architectural patterns,
thus comparing these patterns on the overall performance of
the system, e.g., the response time.

The cyber-physical space consists of a hospital environment
with corridors, rooms, doors, stairs, and elevators. Corridors
are used to reach rooms that may be connected through doors,
which are either locked or unlocked. Stairs are used to move
between different floors, similarly to elevators, however let us
assume that only two-legged robots are able to take stairs,
while all of them (i.e., including wheeled robots) can use
elevators. A graphical representation of the scenario under
analysis is depicted in Figure [I] where some of the provided
services are listed at the top, whereas the bottom part shows
the cyber-physical space with its main constituent elements.

The possible changes in the cyber-physical space that con-
stitute the dynamics of our scenario are regulated by the
probabilities on the status of the physical objects, specifically:

e doors, i.e., the probability of a door to be open or
closed that can be determined by considering the type
of involved rooms, e.g., surgeries are usually connected
through doors that are closed most of the time;

e stairs, i.e., the probability that robots can take the stairs,
it can be determined by considering if such transit areas
are already occupied, e.g., stairs to the kitchen areas are
most likely to be crowded around lunch/dinner times;

o elevators, i.e., the probability of taking an elevator, and it
can be determined by considering if there is enough space
for a robot, e.g., there might be some elevators usually
used for stretchers with a reduced capacity.

We foresee some performance overhead due to the necessity
of changing paths when doors or stairs are not available to
reach the destination of the robot. Moreover, we consider some
waiting time in the case of elevators showing a low capacity.

Uhttps://arxiv.org/pdf/2007.10477
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Fig. 1: Smart Hospital as Cyber-Physical Dynamic Space

Besides the static structure and dynamics presented, let us
consider a performance requirement that needs to be fulfilled
by the design of a smart hospital environment: Robots must be
able to deliver medicines within 40 seconds. This requirement
triggers our model-based performance analysis that is in
charge of evaluating different architectural patterns.

For illustration purposes, we conducted a preliminary study
by manually building a performance model for robots mov-
ing between two areas and crossing a door with a variable
probability of being open. The results are presented in an
informal manner; a concrete model instance, its formalization,
and its parametrization will be presented in the following
sections. The description of the performance model input
parameters is given in Table [ll and their numerical values
(derived by exploring some literature in this domain [[17], [[18]))
are reported in Table It is worth remarking that further
numerical values can be used, e.g., latencies and probabilities
can be deduced by adopting ad-hoc simulation environments.

Figure shows the average latency, expressed in sec-
onds (see y-axis), of delivering medicines while considering
one hundred robots moving through different corridors and
crossing one door only. The probability of such a door to
be open is reported on the x-axis. Curves are representative
of the considered architectural patterns that are: (i) central
(CE), i.e., robots communicate the status of the door to a
central coordinator unit; (ii) semi-decentralized (SD), i.e.,
robots communicate if the door is open/closed to all other
robots occupying the same room; (iii) fully-decentralized (FD),
i.e., robots do not communicate the status of the door, they
autonomously verify it. We can notice that when the door
is always closed, i.e., Pr(AvailableZone) = 0, the FD pattern
is the worst one showing a response time of 50 seconds
roughly. It does not fulfill the stated requirement, and this
is due to the overhead on recalculating the path that is paid
by all robots. As opposite, when the door is always open,
i.e., Pr(AvailableZone) = 1, this pattern becomes the best
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Fig. 2: Different architectural patterns acting in the system
while varying the probability of a door being open.

architectural solution since robots are faster and do not pay
any communication cost. The CE architectural pattern results
to be the best one when the door has a high probability of
being closed, whereas it turns to be less efficient when the
probability is larger than 0.5 since the SD architectural pattern
is instead more convenient. Figure [2b] better visualizes that
there is no unique architectural pattern overcoming all the
others in the considered scenario. To make it clearer, on the y-
axis we depict the difference with the shortest latency (among
the three patterns) expressed in percentage values. We can
notice that the CE architectural pattern is the best up to a
probability of 0.4, then the SD pattern becomes the optimal
solution up to a probability of 0.7 roughly, and later the FD
pattern shows the shortest latency values.

This preliminary analysis motivates us to further investi-
gate the problem. We develop a method to support software
architects in the task of analyzing the performance of three
architectural patterns for cyber-physical dynamic spaces.

III. OUR METHOD

In this section, we present the performance models that have
been built for dealing with cyber-physical dynamic spaces.
Although different performance modelling formalisms [19]
can be adopted to investigate this problem (e.g., queuing
networks, continuous-time Markov chains [20]), we make use
of Generalized Stochastic Petri Nets (GSPN) [21]] since they

have been recently applied to many domains, e.g., blockchains
[22], edge-computing [23], and cyber-physical systems [24]].
Further reasons to select GSPN are: (i) it is a formal method
that allows avoiding ambiguity, (ii) its graphical notation
is easy to understand, and (iii) there exist numerous tools
that can solve and simulate GSPN-based models to derive
performance metrics of interest, such as system response time.
A known limitation of GSPN is the state space explosion, in
fact simulation time may be affected by the size of scenarios
under analysis [21]. We assume that the performance analysis
is conducted at design time, and results are reported to support
software architects in comparing different design alternatives.

A. Performance modelling of Dynamic Spaces

Let us start considering the dynamics affecting our moti-
vating scenario, i.e., robots delivering medicines. We identify
two main types of dynamics that are handled in different ways.
Specifically, there are zones that show (i) femporary dynamics,
such as closed doors, overcrowded stairs, or physical objects
occupying transit areas; (ii) permanent dynamics, e.g., an
elevator has a limited capacity, it accepts a finite number of
robots, and the remaining ones need to wait before using it.
In the former case, we foresee robots deciding to change their
path and look for alternatives, whereas in the latter case we
envisage robots waiting to access. As said in Section [lI} we
consider two different types of robots, and for wheeled robots,
the elevator is the only way to move among different floors.

The case of temporarily unavailable zones can be abstracted
as resources that are (un)available with certain frequency
overtime, i.e., a probability can be associated to denote the
(un)availability of different zones. Figure [3| depicts the refer-
ence performance model; it consists of two places denoted
as circles (i.e., unavailable and available) and two timed
transitions represented as rectangles (i.e., switch-U-A and
switch-A-U). Places determine the state of the zones that
can be either unavailable or available, whereas transitions
are in charge of capturing the events leading to migration
from a state to another. A token (depicted as a small black
circle inside a place) means that the corresponding system
state holds, e.g., in Figure [3] our assumption is that the
zone has an initial state of being unavailable. The switch-U-
A transition follows an exponential distribution with average
time Ugirch—t—a that specifies how often the zone goes from
unavailable to available states. Similarly, Wgyirch—a—u 1S the
average time that the zone is available, and the firing of
that transition captures the time required by the correspond-
ing zone to change its state from available to unavailable.
Hence, the probability that a zone is available is computed as
,uswitch—A—U/(“switch—A—U + ﬂswitch—U—A)-

Figure ] reports the performance model for zones subject to
permanent constraints. Let us assume the elevator can handle
up to K robots at a time, and this is reflected in the place named
capacity showing K tokens. Places boarding-L and boarding-
U denote the multiplicity of robots (i.e., the number of tokens
inside the places are N and M) ready for boarding at the
lower (L) and upper (U) floors, respectively. For readability
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Fig. 3: Performance model for temporarily (un)available zones.
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Fig. 4: Performance model for zones showing permanent
constraints. Arrows show a different dash style for readability.

reasons, Figure [] reports N and M parameters that represent
the aggregated values on the two types (i.e., wheeled and
two-legged) of robots, €.2., N = Nypeeted + Niwo—iegged- Places
floor-L and floor-U model the state of the elevator, and our
assumption is that initially it is on the lower floor, i.e., one
token is showed in floor-L. The timed transition empty-L (or
empty-U) enables the change of floor (whose average time
iS Uempry—1) in case the place boarding-L (or boarding-U) is
empty. This way, the elevator can move even if it is empty to
reach a floor where robots are waiting to be served.

If N > K, then K robots migrate to onBoard-L place through
the activation of the getIn-L immediate transition (represented
as a thin line in Figure @[), i.e., no time is associated to that
operation. Consequently, the capacity place becomes empty,
and the start-L immediate transition is enabled. Then, the
move-L place gets one token, and after the time established for
the moving-L timed transition, such a token is absorbed from
move-L and generated in arrived-L, i.e., expressing the elevator
moves from the lower to the upper floor. Note that moving a
single token from move-L to arrived-L allows modelling the
elevator (and all the robots inside it) reaching its destination in
a time moving-L. Such a time is then used to compute the time
required by each robot to complete the delivery. At this point,
robots get out (see getOut-L immediate transition) from the
elevator, and the capacity is put back to its original setting. The

TABLE I: Description of parameters that can be configured
for the performance modelling of dynamic spaces.

Dynamics | Parameter Description
Temporary | Ugwirch—U—A average time the zone is unavailable
Wsyitch—A—U average time the zone is available
Nyheeled number of wheeled robots in the
lower floor
Niwo—legged number of two-legged robots in the
lower floor
K capacity of the elevator
Myheeled number of wheeled robots in the up-
per floor
Miyvo—iegged number of two-legged robots in the
upper floor
Hempty—L average time required by the elevator,
P when empty, to move from the lower
ermanent
to the upper floor
Hempty—U average time required by the elevator,
when empty, to move from the upper
to the lower floor
Hmoving—L average time required by the elevator
to carry robots from the lower to the
upper floor
Hmoving—U average time required by the elevator
to carry robots from the upper to the
lower floor

status of the elevator (i.e., from lower to upper floor) is updated
through the change-L immediate transition that generates one
token in floor-U place. If N < K, then N tokens are still moved
to the onBoard-L place as in the previous case and (K —N)
tokens are moved to free-L place through the keep-L immediate
transition. This way, the model keeps track of the number of
empty spots in the elevator. After the elevator reaches the
upper floor, its capacity is reconfigured again through the
getOut-L and the release-L immediate transitions. The same
procedure holds for the elevator moving from the upper to the
lower floor, and showed in the rightmost part of Figure [4]
Table [I] reports a brief description of all the parameters that
are defined for the performance modelling of cyber-physical
spaces subject to temporary and permanent dynamics. The
numerical value of these parameters can be set by software
architects that are interested to make use of our models for
the performance analysis of their application scenarios.
GSPNs are suitable to model system concurrency, and the
model of a zone can be easily replicated for multiple doors,
stairs, elevators, and various objects occupying transit areas. In
the case of multiple zones, we can distinguish them by assign-
ing a progressive number, e.g., a scenario with three doors will
be analyzed as part of our experimental evaluation in Section
Each zone can be regulated by its own parameters, e.g.,
two doors may show a different probability of being available.

B. Performance modelling of Architectural Patterns

In this section, we describe the GSPN-based models built to
investigate the performance of three architectural patterns [[16].
These models include a set of parameters described in the
sequel and summarized in Table When evaluating the
performance characteristics of the architectural patterns, soft-



TABLE II: Description of parameters that can be configured

for the performance modelling of architectural patterns.

Pattern | Parameter Description
N number of robots
Wsyitch—U—A average time the zone is unavailable
Wswitch—A—U average time the zone is available
Hwait average time that robots wait to receive a task
[ average time for robots to reach an obstacle
UeoStraight average time for robots to go straight in their
All target path
Hrurn average time for robots to turn and go back
HgoAround average time for robots to go around the
obstacle
SD Wrollow average time spent to communicate with the
robot spreading the notice
Uil average time required for the communication
between the robot that notifies the presence
of an obstacle to the central coordinator
CE Hask average time required by robots to ask in-
formation about the status of a zone to the
central coordinator
Urefresh average time for triggering the control on the
(un)availability of zones.

TABLE III: Input parameters used to obtain the results of our
preliminary investigation in Figure [2] — (*) means that values
vary and determine the Pr(Available Zone) on x-axis.

Parameters Direction | FD SD CE
N 100 100 100
Hswitch—A-U (*) 30 30 30
Mswitcn—-u—a (%) 30 30 30
Hwait 1 1 1
F 9 9 9
Hreach B 1 1 1
F 9 9 9
ugOStmight B 1 1 1
F 9 9 9
u'turn B 1 1 1
F 27 27 27
HgoAround B 3 3 3
F - 1 -
Hrollow B 1 _
F - - 1
Htait B _ B 1
F - - 1
Hask B _ _ 1
F - - 300
Hrefresh B _ _ 300

ware architects can tune these parameters and get quantitative
information. For instance, the performance results obtained in
our preliminary investigation (see Figure [2)) are derived from
numerical values of model parameters shown in Table

1) Fully-Decentralized: Figure [5] depicts N robots that
move forward and backward between the initial and the target
zones, separated by a temporary obstacle, such as a door.
When this pattern is adopted, robots never communicate with
each other, they take decisions based on their observations.
First, they wait to receive a task. In the forward block, robots
reach the obstacle and go straight if they can overcome it (e.g.,
the door is open), otherwise they must turn and go around the

FORWARD
/
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! P . I | targetZone
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,fail L
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initialZone

Fig. 5: Fully-decentralized architecture.

obstacle. After reaching the target zone, robots must go back,
as modelled by the backward block. We assume that robots
traveling in opposite directions do not hamper each other. As
shown in Table for this architectural pattern, see fully-
decentralized (FD) column, software architects can set the fol-
lowing parameters: N, i.e., the number of robots; Lyirch—a—vU
and Ugirch_u—a represent the average time regulating the
(un)availability of zones. Please note that in Table [[TI|these two
parameters are distinguished from the others with this symbol
(*), since they contribute to establishing the probability of a
zone that is then shown on the x-axis of Figure 2] As said in
Section we recall that the probability that a zone is avail-
able is Computed as ,ufswitcthfU/(.un\'witcthfU +.uswitcth7A)~
This means that the values in Table (i.e., 30-30) lead to
determine Pr(AvailableZone) = 0.5. Further parameters are:
Wiwait» 1.€., the average time for a robot to receive a task; Uyeqcns
i.e., the average time for reaching the obstacle that can be
different in forward (F) and backward (B) paths; similarly,
UeoStraight> Mrurn> and Ugoaroung are the average times used for
the corresponding timed transitions (see Figure [3)).

2) Semi-Decentralized: Figure [0 shows the performance
model of the SD pattern by which robots communicate with
their peers if a certain zone is unavailable. Places and tran-
sitions with bold names have been added to explicitly model
the architectural aspects. When a robot fails to go straight
because of an obstacle, it sends a notice to all the other
robots in the same room. These latter robots follow such a
recommendation of not proceeding and go around the obstacle
without approaching it. The robot elected as the spreader of
such information still needs to furn and go around the obstacle.
As reported in Tables [l and this pattern additionally
requires the setting of U0, i.€., the average time spent to
communicate with the robot spreading the notice.

3) Centralized: Figure[7](similarly to Figure[6] bold names
explicitly target the architectural aspects) depicts the cen-
tralized architecture by which robots interact with a central
coordinator in case of an impediment. When a robot fails to
go straight because of an obstacle, it sends a nofice to the
coordinator that is in charge of dispatching such information
to all other robots. Differently from the semi-decentralized
architecture, the information is sent not only to the robots
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occupying the same room of the spreader, but to any robot
approaching the obstacle. The coordinator periodically can re-
fresh the information on the (un)availability of zones, waiting
for a robot acknowledging the presence of an obstacle. As
shown in Tables [II| and this pattern requires the setting of:
Wrqil, 1.€., the average time required for the communication
between the robot that notifies the presence of an obstacle to
the central coordinator; U, i.e., the average time required
for the robots to ask information about the status of a zone
to the central coordinator; U fres, i.€., the average time for
triggering the control on the (un)availability of zones.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the results obtained by analyzing
scenarios that might be of interest to software architects. Note
that our prediction performance results are not compared with
actual measurements from the system implementation, since
this is out of this paper scope. Our assumption is that the

prediction methods are sound and provide accurate prediction
results, as assessed in other works in the literature [25], [26].

A. Research questions

The purpose of our experimental evaluation is twofold: i) it
shows our method can be applied to real medium-sized scenar-
ios; ii) it provides empirical evidence of the impact of different
architectural patterns on the performance characteristics of a
CPS. In particular, we aim to answer two research questions:

RQ1: What are the performance characteristics of architec-
tural patterns when applied to robots moving through
multiple temporary (un)available zones? Which sys-
tem parameters affect the optimality of patterns?
What are the performance characteristics of archi-
tectural patterns in case of permanent (un)available
zones? What happens when changing the percentage
of different types of robots in the system?

RQ2:

To answer these questions, we built performance models
representing two different scenarios, namely S; and S> in
the following. Performance models are simulated using JSIM-
graph [27] installed on a cluster hosting a virtual machine
with 16 vCPU and 32GB memory. In the worst case, each
simulation takes 10 minutes, that is acceptable recalling that
the analysis is performed at design time, see Section

B. Scenario S;: Multiple Temporary Obstacles

Description. Robots move from an initial to a target zone to
deliver medicines, as shown in Figure [§] Two routes connect
the zones: /) a short route with a finite number of temporary
obstacles, i.e., three doors, and 2) a long route. Robots can
choose one of the two routes when they arrive at a fork. Those
that choose the short way may find themselves unable to reach
their destination due to a closed door, and they need to go
back to the fork. The later a robot is blocked by a closed
door, the longer it takes to go back to the fork and follow the
alternative route. Once medicines are delivered, robots must
go back to the initial zone before being able to convey other
items. Robots must choose again one of the two routes (i.e.,
short or long) to reach their destination. Doors may show a
different probability to be closed or open. In fact, each door
is modelled independently of others, i.e., the status of a door
does not depend on others.

Parametrization. Table reports the numerical values
(timings are expressed in seconds) of model parameters used
in Scenario 7 that considers three temporary obstacles, i.e.,
doors. For all parameters (already discussed in Section [II),
we provide values for: (i) directions, i.e., forward (F) and
backward (B); (ii) door instances, namely Dj, D;, and Ds;
(iii) architectural patterns (i.e., FD, SD, and CE). For the sake
of simplicity, all parameters (except U,») show no difference
when considering different directions or doors across the
considered patterns. This choice is to enable a fair compar-
ison among the different architectural patterns. Differences
observed for ., are due to the distance of each door from
the fork, e.g., a robot moving from the initial to the target
zone (i.e., forward) needs 5, 15, or 25 seconds to go back to
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along the path to reach the target destination.

TABLE IV: Numerical values of model parameters for S;.

Parameters Direction | Door | FD SD CE

N 100 100 100
Hwitch—A—U~+ 60 60 60

Hswitch—U—A

Hwait 10 10 10
Lreach F/B D* 5 5 5
HgoStraight F/B D* 5 5 5
D, 5 5 5

F D, 15 15 15

D; 25 25 25

Heurn D | 25 25 25

B D, 15 15 15
D3 5 5 5

Heoaround F/B D* | 40 40 40
Hfoliow F/B D - 1 -
Hfail F/B D* - - 1
Hask F/B D* - - 1
Hrefresh F/B D* - - 60

the fork if door Dy, D;, or D3, respectively, blocks its way.
When the robot moves from the target to the initial zone (i.e.,
backward), it approaches doors in the opposite order (i.e., first
D3, then D5, and finally D;) and this is why it needs 5, 15,
or 25 seconds, respectively, to go back to the fork.

Results. Figure 0] shows the results obtained by simulating
Scenario S; with parameters given in Table Solid lines in
Figure [Oa] depict the average system response time (i.e., the
time spent by a robot for going from the initial to the target
zone, then back to the initial zone) against the probability
that each single door is open. For instance, the 0.5 value
on the x-axis of Figure El] means that D;, D,, and D3 are
open with a probability of 0.5, whereas the overall system
probability (all doors open at the same time) is given by their
product, i.e., 0.125. Results are collected with 95% confidence
intervals shown in Figure Da) by the shaded areas. Figure
[Ob] depicts how far is each architectural pattern (in terms of
average latency) from the one allowing robots moving with
the shortest latency, i.e., 0% on the y-axis represents the
optimal architectural pattern. In case of low probability for
each door to be open, i.e., small values of Pr(AvailableZone),
the FD architectural pattern shows the worst performance
since robots do not synchronize or exchange information.
This architectural pattern minimizes the system response time
when the probability that each door is open is larger than
0.9 since there is no communication overhead. SD and CE
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Fig. 9: System performance of Scenario S plotted against the
probability that each door is open. Numerical values of model
parameters are given in Table

architectural patterns show similar performance when the
probability that each door is open is between 0% and 75%.
Benefits of using the SD architectural pattern are maximized
for 0.75 < Pr(Available Zone) < 0.9. In this case, robots
finding a closed door minimize the communication overhead
by exchanging messages only with other robots approaching
the same door. The CE architectural pattern shows minimum
latency for 0 < Pr(Available Zone) < 0.75 since all robots are
aware of door status thanks to the central coordinator.

Figure [I0] reports the performance of each architectural
pattern against the number of robots in the system when
setting: Pr(AvailableZone) = 0.5 and Uy fresn = 10 seconds.
These experiments show that the proposed approach is highly
scalable since it is able to handle at least 1.2k robots. Large
fleets are generally made of hundreds of robots [17]. It is
worth noting that the efficiency of the CE architectural pattern
increases with the number of robots. When there are less
than 600 robots in the system, the CE and SD architectural
patterns show equivalent performance. The CE architecture
keeps performing well also with a high number of robots
thanks to the short communication times (i.e., U, and
Hasi» see Table [IV). A fragility of CE might be represented
by the central node that becomes overwhelmed of requests.
Parameters of our model are set to avoid such a scenario, but
we plan to further investigate this in our future research. The
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Fig. 10: System performance of Scenario S| plotted against the
number of available robots when Pr(Available Zone) = 0.5. All
model parameters, except N (varying, see x-axis) and L fresh
(10 seconds), are the same as shown in Table

average response time of the SD architectural pattern shows
a convex behavior, indeed high latency values are observed
with both a few robots in the system (i.e., when it is difficult
to spread the information about the door status) and many
robots (i.e., when communicating with other robots in the
same zone is expensive). The SD architecture shows the worst
performance in case of more than 1.1k robots, and this is due to
the overhead accumulated by the increasing number of robots
spreading the information on the status of the three doors.

RQ1: In summary, there is not a unique architectural pat-
tern that always overcomes the others in case of temporary
(un)available zones. The optimal pattern depends on the
probability that a robot finds its way blocked, the number
of robots, and the communication overhead.

C. Scenario Sy: Temporary and Permanent Obstacles

Description. In this scenario, initial and target zones are
located on two different floors that are connected by the stairs
and an elevator, see Figure The stairs may be momentarily
inaccessible (e.g., being overcrowded or due to obstacles),
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Fig. 11: Scenario S>: multiple temporary and permanent
(un)available zones along the path.

TABLE V: Numerical values of model parameters for S,.
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while the elevator has a permanent finite capacity, i.e., it can
move only a subset of robots at the same time. Two types of
robots are considered in this scenario: /) two-legged robots
can reach the other floor using either the stairs or the elevator;
2) wheeled robots can move to the other floor only using the
elevator. We assume that both types of robots move at the
same speed. Two-legged robots first try to change the floor
by taking the stairs and, if there are obstacles blocking the
way, they go back to the elevator. Even if the elevator may
allow robots to reach their destination faster than the stairs,
its finite capacity makes robots spend time in line waiting for
their turn to use the elevator. This can dramatically extend the
time required to reach the other floor by using the elevator.
The waiting time is further extended since we intentionally
consider there is only one elevator serving both floors.
Parametrization. Table [V] shows the numerical values of
model parameters used in Scenario S, that considers initial and
target zones on two different floors. Similarly to the previous
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Fig. 12: System performance of Scenario S, plotted against the
probability that each door is open and the stairs are accessible.
Numerical values of model parameters are given in Table m

scenario, we report values for each direction (i.e., forward and
backward), zone (i.e., Door and Stairs), and the considered
architectural patterns (i.e., FD, SD, and CE). Here we assume
that there might be different costs to interact with diverse
dynamic spaces, €.g., Uyeqach = 5 for a door and 15 for stairs.

Results. Figure [12] depicts the performance of the three
architectural patterns applied to Scenario S, against the prob-
ability that some obstacles (i.e., a closed door or over-crowded
stairs) make robots take alternative (i.e., longer) routes. Figure
[I2a] shows the average system response time. Figure [T2D]
depicts how far is the response time of each architectural
pattern from the shortest one observed during the experiment.
In this scenario, the CE architectural pattern shows good
performance only when the probability of robots finding a
blocked way is high. Note that a long refresh time (i.e.,
Wrefresn) Turther worsen the observed latency by decreasing the
frequency with which the central coordinator updates stored
information about the obstacle (i.e., door and stairs) status.
Results for longer (i.e., Uyefresn) are not shown here for the
sake of space. The SD architectural pattern performs better
than CE for 0.3 < Pr(Available Zone) < 0.7. The motivation
for this behavior is that SD includes communication among
peers occupying the same zone, whereas CE keeps propagating
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Fig. 13: System performance of Scenario S, plotted against
percentage of two-legged robots when Pr(Available Zone) =
0.083. All model parameters, eXcept Nyyo—jegged aNd Nyppeeleds
are the same as shown in Table M

information that is useless for robots that are far from the
obstacle. As previously observed for Scenario S;, the FD ar-
chitectural pattern minimizes the latency when the probability
that there are no obstacles is high. In this case, reducing the
number of exchanged messages is the winning strategy.

Figure [13] depicts the performance of architectural patterns
against the ratio of two-legged (and wheeled) robots. These
results are obtained by setting Pr(Available Zone) = 0.083, i.e.,
5/60 = Ugwireh—a—uv [ (Kswitch—U—A + Hswireh—A-u)- Such a low
value is selected for modelling many robots using the elevator
to move among floors. The CE architectural pattern always
provides the shortest latency. Benefits of using this pattern
instead of others increase with a higher percentage of two-
legged robots in the system. This is due to the key role of
the central coordinator that alerts two-legged robots of not
taking the stairs (recall that probability of being available is
intentionally set low) and using the elevator.

RQ2: In summary, always-optimal architectural patterns
do not exist also for permanent (un)available zones. Hav-
ing more two-legged robots does not affect the optimal
architectural pattern but worsen the system performance.




D. Threats to Validity

We are aware that generalization of results (i.e., external
validity) is not guaranteed, since our models have been applied
to two medium-sized scenarios only, and we plan to develop
larger scenarios as future work. However, at the current stage
our focus is to raise the attention of software architects
pointing out that design alternative patterns show very different
performance characteristics when subject to space dynamics.

To mitigate threats to internal validity, we designed our
experiments with the goal of having a direct manipulation
on the performance indices of interest. For instance, the
three architectural patterns share parameter values to avoid
misleading effects that cannot be traced back to root causes.
Setting numerical values to input parameters is indeed an open
issue in the software performance engineering domain [28]. To
improve this point, the probabilities of available zones might
be derived with the introduction of a monitor that collects data
for a certain time frame and produce some statistics. Besides,
other parameters can be further detailed, e.g., different robots
may show diverse performance characteristics (e.g., the speed
of going straight). This implies the adoption of coloured Petri
Nets [29] that may represent an extension of our current
modelling. Moreover, the choice of using GSPN as the target
notation for modelling the performance does not reduce the
applicability of our method. As future work, we plan to
experiment with further notations (e.g., queueing Petri nets
[30], [31]]) to investigate their usability and scalability.

To smooth construct validity threats (i.e., the assessment of
the validity of the results used during our experimentation) and
assess statistical validity of collected performance indices, we
set that all simulations undergo a 95% confidence interval to
monitor the accuracy of numerical results.

V. RELATED WORK

The work presented in this paper relates to two main streams
of research that we review in the following.

Architecting Cyber-Physical Systems. A preliminary study
in this direction is provided in [32], where authors discuss the
open challenges; dealing with the performance characteristics
of CPS is identified as a relevant matter. An evolution of
this study is presented in [33]], performance aspects are even
more detailed and there are some further goals that emerge as
of key relevance, i.e., timeliness and dynamic path planning
that are both considered by our method. The continuous
monitoring of environmental conditions is proposed in [8]], and
an architectural description is proposed for modelling cyber-
physical spaces. Dynamic constraints of CPS architectures
are investigated also in [34]], and an industrial case study
on autonomous transportation robots is used for defining a
variability modelling approach in charge of documenting such
constraints. Architecture-based self-adaptation is tackled for
CPS, please refer to the systematic literature review in [9]], but
also for IoT several approaches recently emerged [11f], [35],
[36]. Our work makes use of the architectural patterns for the
adaptation of CPS [16], and we are interested in exploiting
their performance-related characteristics.

Performance modelling of Dynamic Spaces. The modelling
of evolving cyber-physical spaces has been proposed in [[13]]
for verification purposes, however this approach relies on a
logic-based specification of system properties that are later
analyzed with probabilistic model checking. The efficiency of
this verification engine has been recently improved in [37]]
where a slicing technique is introduced to transform the spec-
ification of a model into equivalent sub-models that achieve
better scalability since they are tailored for analyzing specific
requirements. The analysis of spatio-temporal properties of
stochastic systems recently gained the attention of several
researchers. For instance, in [38]] a spatio-temporal reach and
escape logic, namely STREL, is introduced to verify spatial
operators, later refined in [39] to keep track of the evolution of
the satisfaction of system properties. More recently, in [40] a
tool has been developed to monitor spatio-temporal properties
of CPS, where space is modelled as a weighted graph whose
quantities can change overtime.

Summarizing, our work mainly differentiates from the state-
of-the-art since we explicitly target the performance character-
istics of architecting CPS, and our method shows the goal to
support software architects in the task of evaluating multiple
design patterns and selecting the optimal one depending on
the considered scenario and its physical space dynamics.

VI. CONCLUSION

In this paper, we present a novel approach to model and
analyze the performance characteristics of different architec-
tural patterns in the context of cyber-physical dynamic spaces.
We propose a set of performance models to investigate the
impact of architectural patterns on system performance, and
results confirm the usefulness of our models as support to
software architects in the task of evaluating different design
alternatives. Our experimental evaluation focuses on assessing
the system performance of different architectural patterns, and
it reinforces our initial guess that it is indeed helpful to analyze
the circumstances triggered by the dynamic spaces, and to
switch among such patterns accordingly. The main contribu-
tion of our method is to provide quantitative information to
raise the attention of software architects to the performance
evaluation of different design alternatives.

In future work, we plan to address all the limitations dis-
cussed as part of threats to validity. Besides, we are aware that
building performance models requires a high level of expertise
and a deep understanding of the CPS. To support software
architects in re-applying our method in another problem con-
text, we plan to build a framework that semi-automatically
generates performance models and produces results, on the
basis of some configuration settings. Moreover, we are inter-
ested to apply the approach in different industrial domains
to investigate its usefulness across diverse applications and
more complex scenarios, e.g., robots that hamper each other
when traveling in opposite directions due to small hallways.
This way, we plan to further investigate the scalability of our
method with more complex systems in different domains.
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