
QN-based Modeling and Analysis of Software Performance
Antipatterns for Cyber-Physical Systems

Riccardo Pinciroli
Gran Sasso Science Institute

L’Aquila, Italy
riccardo.pinciroli@gssi.it

Connie U. Smith
Performance Engineering Services

L&S Computer
Technology, Inc. Austin, TX, USA

www.spe-ed.com

Catia Trubiani
Gran Sasso Science Institute

L’Aquila, Italy
catia.trubiani@gssi.it

ABSTRACT
Identifying performance problems in modern software systems
is nontrivial, even more so when looking at specific application
domains, such as cyber-physical systems. The heterogeneity of soft-
ware and hardware components makes the process of performance
evaluation more challenging, and traditional software performance
engineering techniques may fail while dealing with interacting and
heterogeneous components. The goal of this paper is to introduce
a model-based approach to understand software performance prob-
lems in cyber-physical systems. In our previous work, we listed
some common bad practices, namely software performance antipat-
terns, that may occur. Here we are interested in shedding light
on these antipatterns by means of performance models, i.e., queu-
ing network models, that provide evidence of how antipatterns
may affect the overall system performance. Starting from the spec-
ification of three software performance antipatterns tailored for
cyber-physical systems, we provide the queuing network models
capturing the corresponding bad practices. The analysis of these
models demonstrates their usefulness in recognizing performance
problems early in the software development process. This way,
performance engineers are supported in the task of detecting and
fixing the performance criticalities.

CCS CONCEPTS
• General and reference → Performance; Metrics; • Computer
systems organization→ Embedded and cyber-physical systems.

KEYWORDS
Queuing Networks, Software Performance Antipatterns, Cyber-
Physical Systems

ACM Reference Format:
Riccardo Pinciroli, Connie U. Smith, and Catia Trubiani. 2021. QN-based
Modeling and Analysis of Software Performance Antipatterns for Cyber-
Physical Systems. In Proceedings of the 2021 ACM/SPEC International Confer-
ence on Performance Engineering (ICPE ’21), April 19–23, 2021, Virtual Event,
France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3427921.
3450251

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450251

1 INTRODUCTION
In the software development process, there is a high interest in
the early validation of requirements, especially for performance-
related characteristics that have been recently considered as the
new system correctness [16]. The cost of fixing errors has been
demonstrated to escalate exponentially as the project matures dur-
ing the various phases of its life cycle [36].

Software Performance Engineering (SPE) [9, 28, 29] aims to pro-
duce performance models early in the development cycle. Solving
such models produces predictions that can trigger the process of
refactoring the system design tomeet performance requirements[29].
In the last years, several strategies have been successfully adopted to
automate the modeling and analysis of software performance [15],
and optimization techniques [1]. However, the problem of interpret-
ing performance analysis results is still critical, especially when con-
sidering application domains where the heterogeneity of software
and hardware components may cause traditional SPE approaches
to fail, e.g., cyber-physical systems (CPS) and internet of things
(IoT).

In this paper, we focus on identifying performance issues in CPS,
i.e., systems with heterogeneous software and hardware compo-
nents. Our goal is to identify the system performance flaws by lo-
calizing the weakest points and rapidly fixing them. To achieve this
objective, we make use of software performance antipatterns [33–
35], recently customized for CPS [30]. The rationale behind this
choice is that software performance antipatterns include the de-
scription of (i) problems leading to performance issues and (ii) best
practices aimed to get performance improvements. Consider the
Blob performance antipattern which occurs when a single compo-
nent monopolizes the computation managing most of the work
and becomes a system bottleneck. To solve this bad practice, it
is necessary to improve the management of the system workload
by delegating work to surrounding components and running the
computation in a distributed fashion.

In the context of CPS, we focus on the following three software
performance antipatterns: (i) Are We There Yet?, i.e., requests using
computing resources to check the occurrence of some events; (ii)
Is Everything Ok?, i.e., requests verifying the status of computing
resources; (iii) Where Was I?, i.e., processes forgetting their current
state and recalculating it. To model and study these antipatterns,
we use the queuing network (QN) formalism [21] since it has been
demonstrated to be effective in real-world scenarios [39]. The ob-
jective of our research is to show the usefulness of QN models
in recognizing and analyzing performance problems that can be
traced back to the occurrences of performance antipatterns. The
main contributions of this paper is summarized as follows:

https://doi.org/10.1145/3427921.3450251
https://doi.org/10.1145/3427921.3450251
https://doi.org/10.1145/3427921.3450251

• the specification of QN models expressing the peculiarities
of three software performance antipatterns for CPS;

• the injection of software performance antipatterns for CPS
and their experimentation on a real case study;

• empirical evidence on the benefit of detecting and solving
software performance antipatterns for CPS.

The rest of the paper is organized as follows. Section 2 provides
some background on the three software performance antipatterns
that we consider in this paper and briefly presents a motivating
example, i.e., smart parking. Section 3 describes queuing networks
that model the antipatterns applied to an abstract example (includ-
ing a device and a server) and evaluates them experimentally to
show the impact of antipatterns on the system performance. Sec-
tion 4 assesses software performance antipatterns in the considered
case study, i.e., a net of continuously-monitored sensors. Threats
to validity are argued in Section 5. Section 6 briefly reviews related
work. Concluding remarks and possible directions for future work
are outlined in Section 7. All experiments and replication data are
publicly available: https://doi.org/10.5281/zenodo.4495665.

2 PRELIMINARIES
In this section we briefly review the background concepts of soft-
ware performance antipatterns and cyber-physical systems through
a motivating scenario, i.e., a "smart" parking scenario.

2.1 Software Performance Antipatterns
Table 1 reports a brief description of software performance antipat-
terns defined in the context of Cyber-Physical Systems, further
details are available in [30]. The first column shows antipatterns’
names, followed by the textual explanation of the performance prob-
lems the corresponding antipattern triggers, and lastly the foreseen
solutions for improving the system performance. Examples of each
are in the following subsection.

Table 1: Software Performance Antipatterns in Cyber-
Physical Systems [30].

Antipattern Problem Solution
Are we there yet? The problem is the

frequency and over-
head of the check-
ing relative to the
time it takes for an
event to occur.

Adjust the polling
interval delay.

Is Everything OK? It refers to repeat-
edly checking the
CPS platform status,
such as the remain-
ing battery life, stor-
age space, etc.

Change the plat-
form status check-
ing, e.g., based on
pre-defined events,
states, or time.

Where Was I? It refers to processes
that do not remem-
ber state informa-
tion and there is ex-
cessive overhead to
recalculate the state.

Save state, check if
previous results ap-
ply, invoke context-
dependent actions,
or use a custom-
designed solution.

LTE LTE✘✘

✔✘
✘✔✔✘✘

Figure 1: Sketch of the Smart Parking System [5].

2.2 Smart Parking System
Figure 1 provides a bird’s eye view of a CPS that we use as our mo-
tivating example, namely the Smart Parking System, further details
are available in [5]. The goals of this case study are: (i) evaluate the
performance of the system design to provide information to cars
looking for an empty parking spot; (ii) obtain predictive analytics
from image data in a timely manner; (iii) determine the best design
to meet the stated performance requirements.

From a performance engineering perspective, there are several
performance antipatterns that could occur. For example, if the server
polls the cars to see if they have new video available (i.e., Are We
There Yet? performance antipattern) the polling interval may cause
performance problems. If the time interval is too small, then the car
is continuously interrupted, the server is busy with overhead rather
than real work, and the overall system performance may suffer. If
the time interval is too long, video may become stale before the
server acts on it.

Another example is when the server frequently contacts all cars
to confirm that their cameras are functioning correctly (i.e., Is Every-
thing OK? performance antipattern). This implies that the retrieval
of images is delayed and cars may have an unexpected delay in
receiving parking results. As opposite, if it is in charge of cars
to communicate any camera malfunction, then fewer messages
are exchanged and this may be beneficial for the overall system
function.

A final example is the possibility that the server does not remem-
ber previous parking results and re-starts the video analysis (i.e.,
Where was I?). If instead the server remembers "objects of interest"
such as where parking spots were available, it could first make a
quick check to see if it is still available. If the server does not re-
member previous results it wastes considerable time recalculating
and the overall system performance suffers.

These scenarios motivate the value of automating the detection
and solution of these bad practices. To this end, Section 3 presents
QN models that show the performance effects of these performance
antipatterns, and Section 4 demonstrates their usefulness in the
context of a more complex case study, i.e., a network of sensors
exchanging sensitive data.

https://doi.org/10.5281/zenodo.4495665

3 OUR APPROACH
In this section, we describe our methodology to model performance
antipatterns introduced in [30] using queuing networks [21]. For
illustration purposes, here we intentionally adopt a simple and
abstract software system composed of only a device and a server,
and it represents our baseline (see Section 3.1). Modeling of soft-
ware performance antipatterns is described decorating the baseline
model in Section 3.2, and their impact on the system performance
is analytically evaluated and discussed in Section 3.3.

3.1 Baseline
To investigate the effect of software performance antipatterns on a
system, let us consider a single-class queuing network model with
a delay station and two queueing stations (i.e., device and server),
as showed in Figure 2. The model describes a batch (closed) system
with a workload regulated by a think time, i.e., 𝑍 , where a device
collects data (e.g., images, noise, temperature) that is processed
by a server. Data collection and processing follow an exponential
distribution with average service demand 𝐷𝑑𝑒𝑣 and 𝐷𝑠𝑒𝑟 , respec-
tively. Both stations use a Processor Sharing queuing strategy (i.e.,
all requests receive an equal amount of the available service capac-
ity) and the number of requests in the system, 𝑁𝑟𝑒𝑞 , is fixed. Input
model parameters are reported in Table 2, specifically we consider
10 requests (𝑁𝑟𝑒𝑞) with 0 think time (𝑍), and service demands 0.02
(𝐷𝑑𝑒𝑣) and 0.04 (𝐷𝑠𝑒𝑟) for device and server, respectively. We use
service demands since they account for both the service time and
the number of visits to each station.

Device Server

Ddev Dser

Nreq

Z

Figure 2: The queuing network model of the system used as
baseline to study software performance antipatterns.

Table 2: Input parameters and performance indices of the
queuing model in Figure 2 solved using MVA [21].

Parameters Indices
𝑁𝑟𝑒𝑞 10 𝑅

𝑑𝑓 𝑙𝑡
𝑠𝑦𝑠 0.4

𝐷𝑑𝑒𝑣 0.02 𝑈𝑑𝑒𝑣 0.5
𝐷𝑠𝑒𝑟 0.04 𝑈𝑠𝑒𝑟 1
𝑍 0 – –

Table 2 also reports the baseline performance indices obtained
using mean value analysis (MVA) [21]. These indices are consid-
ered in the sequel of the section to further investigate software
performance antipatterns. More specifically, we plot in Figure 3
the performance indices of the considered system: (i) the default
(dflt) system response time of requests – 𝑅

𝑑𝑓 𝑙𝑡
𝑠𝑦𝑠 ; and the usage of

resources, i.e., (ii) the utilization of the device – 𝑈𝑑𝑒𝑣 and (iii) the

0.00 0.02 0.04 0.06 0.08
Sser

0.0

0.2

0.4

0.6

0.8

Sy
st

em
 R

es
po

ns
e

Ti
m

e

Rdflt
sys

Udev

User

0

25

50

75

100

Utilization [%
]

Figure 3: Model-based performance analysis results of the
baseline queuing network.

utilization of the server –𝑈𝑠𝑒𝑟 . These indices undergo a variation
of the service demand of the Server station, 𝐷𝑠𝑒𝑟 , varying from
0 to 0.08, and the service demand of Device, 𝐷𝑑𝑒𝑣 , is instead set
to 0.02. Note that the bottleneck of the system is the device when
𝐷𝑠𝑒𝑟 < 0.02, the server otherwise. The vertical dashed line shows
the 𝐷𝑠𝑒𝑟 value used to determine the baseline performance (see
Table 2).

3.2 Modeling
The three performance antipatterns introduced in [30] are modeled
using the queuing network formalism. For illustration purposes, we
adopt the baseline model in Figure 2 and we extend it to account for
performance antipatterns. For the sake of clarity and without loss
of generality, in this section, we assume that performance antipat-
terns affect the device station only. Note that all considerations and
findings are easily reproducible if the server station is alternatively
considered as target station to accommodate antipatterns.

3.2.1 Are We There Yet? Requests that use computing resources
to check if an event has occurred are modeled by extending the
QN in Figure 2 with a new request class (checking), as in Figure 4.
Specifically, 𝑁𝑐ℎ𝑘 requests of the new checking class are initialized
in the system (i.e., one for each event that must be monitored), each
of which spends an exponentially distributed time with average
𝑍𝑐ℎ𝑘 in the delay station. This way, we model the invocation of a
checking request every time a certain (monitored) event happens.
The Device service demand of the checking follows an exponential
distribution with average 𝐷𝑐ℎ𝑘 . As stated in [30], the checking
overhead is not negligible and requires many resources, i.e., 𝐷𝑐ℎ𝑘 ≃
𝐷𝑑𝑒𝑣 . We recall that, for the sake of simplicity, we assume that the
server is not affected by this software performance antipattern in
the considered example. Therefore, the checking requests do not
visit the Server station, they are routed back to the delay station.

3.2.2 Is Everything OK?. Similar to the Are We There Yet? software
performance antipattern, the Is Everything OK? one is modeled by
adding another request class (as in Figure 5). This time, the checking
requests are invoked over and over to check the status of resource

Device Server

Ddev

Dser

Nreq

Nchk

Dchk ≃ Ddev

chk.

req.

Z
Zchk ∼ Exp

Figure 4: QN model of the Are We There Yet? software per-
formance antipattern. A new class that models checking re-
quests (chk) is introduced and an exponential checking in-
terval is used. The service demand of the new class is similar
to the default one.

Device Server

Ddev
Dser

Nreq

Zchk ∼ Det

Nchk

Dchk

chk.

req.

Z

Figure 5: QN model of the Is Everything OK? software per-
formance antipattern. A new class that models checking re-
quests (chk) is introduced and a deterministic checking in-
terval is used. The service demand of the new class is much
smaller than the default one.

Device Server

Nreq

Z

Dser

Ddev +∆

Figure 6: QN model of the Where Was I? software perfor-
mance antipattern. The service demand of the affected re-
source is increased by Δ time units.

components (e.g., battery, storage). Assuming that this performance
antipattern affects only the device of the considered system, a new
checking request is sent to the device 𝑍𝑐ℎ𝑘 time units after the
previous check is completed. The periodic check is modeled with a
deterministic think time since the interval between two consecutive
polling is coded in the application. There are𝑁𝑐ℎ𝑘 checking requests
in the systems, i.e., the status of 𝑁𝑐ℎ𝑘 components of the device
are checked periodically. The time to complete each status check,
𝐷𝑐ℎ𝑘 , is generally much smaller than the time required to process
default requests (i.e., 𝐷𝑐ℎ𝑘 ≪ 𝐷𝑑𝑒𝑣).

3.2.3 Where Was I?. A process that loses its state must resume
the execution from a past predefined state. This is modeled by
increasing the service demand of the process at the station affected
by the antipattern. Assuming that this performance antipattern
affects the device of the system in Figure 2, the state loss is modeled
by adding Δ time units to the device service demand, i.e., 𝐷𝑑𝑒𝑣 + Δ,
as shown in Figure 6. The value of Δ represents the average time
spent by the device to recalculate the state during each visit to
the device. Δ may be a minor recalculation; however, there may be

Table 3: Input parameters of performance antipatterns
when applied to the baseline system in Figure 2.

Antipattern 𝑁𝑐ℎ𝑘 𝐷𝑐ℎ𝑘 𝑍𝑐ℎ𝑘 Δ
Are We There Yet? 10 0.01 (0 , 0.4) –
Is Everything OK? 10 0.001 (0 , 0.04) –
Where Was I? – – – [0 , 0.06)

cases (e.g., connectivity issues) that require extensive processing to
recalculate the state [30].

3.3 Analysis
QN models presented and discussed in Section 3.2 are simulated,
with Java Modelling Tools (JMT) [3], to investigate the effect of
software antipatterns on the performance of the baseline system
in Figure 2. Input parameters adopted for this investigation are
reported in Table 3 and explained hereafter.

3.3.1 Are We There Yet? Parameters of the checking class intro-
duced to model this performance antipattern (see Figure 4) are
shown in the first row of Table 3. The number of checking requests
is set to 10, i.e., 10 requests are sent to the device checking for some
events. The service demand of checking requests is estimated to be
half the time required to execute default requests (i.e., 𝐷𝑑𝑒𝑣), i.e.,
polling events require many resources to be processed. The think
time of checking requests varies in the interval (0, 0.4) to evaluate
how more frequent checking requests affect the performance of the
system. Results are depicted in Figure 7(a), where the blue solid line
is the system response time of default requests (plotted on the left
y-axis), the red and partially dotted line is the device utilization, and
the green dotted line is the server utilization (both plotted on the
right y-axis). Shaded areas represent the 99% confidence interval.
As expected, the system response time of default requests decreases
when the checking interval increases. Longer checking intervals
reduce the usage of the device and allow fast processing of default
requests on the device. Baseline performance (i.e., 𝑅𝑑𝑓 𝑙𝑡𝑠𝑦𝑠 = 0.4, as in
Table 2) are observed when the checking interval is larger than 0.2
time units. Summing up, checking the occurrence of an event too
often leads to performance overhead (perceived as an increase in
the utilization of a resource) that prevents other resources from ac-
complishing their work, most likely switches the system bottleneck,
and slows down the overall computation.

3.3.2 Is Everything OK?. Parameters that characterize the system
in Figure 2 when it is affected by the Is Everything OK? software
antipattern are provided in the second row of Table 3. The number
of components whose status is repeatedly checked is set as follows,
i.e., 𝑁𝑐ℎ𝑘 = 10. The status check requires fewer resources than
the Are We There Yet? case since now the device must only return
the status of the checked component. Therefore, 𝐷𝑐ℎ𝑘 is estimated
to be one order of magnitude smaller than the previous case (i.e.,
𝐷𝑐ℎ𝑘 = 0.001). The system performance are studied against the
checking interval and shown in Figure 7(b). The performance be-
havior is similar to the one observed for the Are We There Yet? case
(this is expected due to the similarity of the two antipatterns [30]).
However, it is worth noting that baseline performance is observable
with a short checking interval, i.e., larger than or equal to 0.02 time

0.0 0.1 0.2 0.3 0.4
Zchk

0.35

0.40

0.45

0.50

Sy
st

em
 R

es
po

ns
e

Ti
m

e
Rdflt

sys

Udev

User

0

25

50

75

100

Utilization [%
]

(a) Are We There Yet?

0.00 0.01 0.02 0.03 0.04
Zchk

0.35

0.40

0.45

0.50

Sy
st

em
 R

es
po

ns
e

Ti
m

e

0

25

50

75

100

Utilization [%
]

(b) Is Everything OK?

0.02 0.03 0.04 0.05 0.06 0.07 0.08
Ddev +

0.3

0.4

0.5

0.6

0.7

0.8

Sy
st

em
 R

es
po

ns
e

Ti
m

e

0

25

50

75

100

Utilization [%
]

(c) Where Was I?

Figure 7: Effect of the three performance antipatterns on the baseline system.

units. This is due to the short processing time required to retrieve
the status of device components. Summing up, checking the status
of a resource leads to a variation for the performance indices that
is very similar to the Are We There Yet? antipattern (i.e., switching
the system bottleneck and increasing/decreasing the utilization
of resources). However, in this case, the performance overhead is
generated by a high frequency of checking a resource, not from the
checking activity itself that instead is rather small.

3.3.3 Where Was I?. The only parameter that is changed when
modeling this performance antipattern is the service demand of
the considered resource (i.e., the device, in this case). Specifically,
a value Δ is added to the original service demand to model the
processing time required to recalculate the state. As shown in Table
3, we consider the Δ value to vary from 0 to 0.06. This way, the
system performance is evaluated against the device service demand
in the range [𝐷𝑑𝑒𝑣, 𝐷𝑑𝑒𝑣 + 0.06). Results are shown in Figure 7(c).
When the Where Was I? antipattern does not affect the device (i.e.,
Δ = 0) the server is the bottleneck of the system, i.e., 𝑈𝑠𝑒𝑟 > 𝑈𝑑𝑒𝑣 ,

and the system response time of the default request is the same
observed in Table 2. The system response time of the default request
increases with the device service demand (𝐷𝑑𝑒𝑣 + Δ). The device is
the bottleneck of the system for Δ > 𝐷𝑑𝑒𝑣 , i.e., restoring the state
requires extensive processing.Summing up, when recalculating a
state becomes more expensive than the actual computation, the
response time can dramatically increase, and the system bottleneck
switches.

4 CASE STUDY
In this section, we describe the CPS used to study the effect of
software performance antipatterns in a realistic scenario.

4.1 Description
The resiliency of cyber-physical systems is essential and it is chal-
lenging to ensure that new systems meet resilience requirements
without sacrificing performance. This case study shows how both
security and performance can be analyzed before implementation,

Table 4: Input parameters for the sequence diagram in Fig-
ure 8.

Task Processing time (msec)
Encrypt 0.96
Database Table Insert 0.6
Filter 0.21
Database Table Lookup 0.6
Decrypt 0.96
Predictive Analytics 0.32

and how the performance models can quantify the effect of perfor-
mance antipatterns that may be present in the design.

The case study analyzes an existing data acquisition (sensorNet)
system along with the machine control actions triggered by sen-
sor values. We predict its performance when encryption is added
to ensure that data is securely transferred between internal pro-
cessors and the database. The original study [32] compared three
options: one added security/encryption with the existing, basic
sensors where the encryption and filtering happen on the (internal)
controllers; the second evaluated replacing the basic sensors with
smart sensors that do their own encryption; the third optimized
the encryption algorithms to improve the basic sensor scenario. All
used a cloud-hosted database for storing the data. This case study
focuses on the original existing sensor version using a local data-
base server and examines the performance effect with the presence
of added performance antipatterns.

The encryption and decryption is based on an open source ver-
sion of the advanced encryption standard (AES), a symmetric en-
cryption algorithm developed by Daemen and Rijmen [10]. The
encryption services are processed by the AES algorithm on the con-
troller, filtered and then analyzed; the data is stored in the database.
There is a table look up based on recent posts to the database which
provides correlation to recent movement discovered by the sensor.

The processing steps for the Analysis scenario are shown in the
sequence diagram reported in Figure 8. The antipatterns have been
added to the case study as follows:

• Are We There Yet? is modeled with a workload (Polling) that
executes at regular intervals to check if a sensor value has
arrived.

• Is Everything OK? is modeled in a separate scenario (se-
quence diagram not shown) that executes at regular inter-
vals to check the status of multiple platform resources, e.g.,
battery, buffer, sensors, etc.

• Where Was I? is modeled as the step refreshState just before
the predict processing step.

The resource requirements are reported in Table 4. For example,
we see that the Encrypt and Decrypt tasks require the most pro-
cessing, in fact their processing time is 0.96 milliseconds, whereas
other tasks show lower values.

4.2 Performance Models
In this section, we model the system described in Section 4.1 using
execution graphs (EG) [29] (solved with SPE·ED) and queuing net-
works combined with Petri Nets (PN) [9] (solved with JMT). The

Sensor Analytics aes filter DBServer latency
Timer

arrival?()

start()

read Message

read Message0 aes encrypt()

aes encrypt()

insert()

doFilter()

doFilter()

lookup Message

lookup Message0

aes decrypt()

aes decrypt()

refreshState()

predict()

aes encrypt()

aes encrypt()
insert()

stop()

loop

Figure 8: Sequence Diagram of the Analysis scenario.

Process

Reading

Refresh

State
Predict

Post

Result

Figure 9: Steps in the Analysis sequence diagram.

validity of the QN+PN model is assessed by comparing its results
with those obtained by solving the EG model. EG are a well-known
formalism and they have been assessed in the SPE domain [29].

4.2.1 Execution Graphs. The system described in Section 4.1 is
modeled by execution graphs of fourworkloads (i.e., Analysis, Actor,
Status, and Polling). The workloads cycle through the Controller
(central server) and the delay servers. After completion, workloads
go to the think device where there is an exponential delay before
the workload re-enters the system. The execution graph model is
solved with SPE·ED [29], a tool designed specifically to support SPE
methods and models, that provides as output performance analysis
results.

Each workload of the system is modeled by a SPE·ED scenario
derived from a sequence diagram (e.g., Figure 8 for the Analysis
scenario). The interactions in the sequence diagram become steps
in the corresponding SPE·ED scenario. The model for the steps

Controller
Delay

Database

Sensors

noData

getData

Data

CS3:

Poll.2

Anal.

CS1:

Exc.2

Status

CS2:

Status

2 Exc.

CS4:

Anal.2

Poll.

anyData?

Polling

Analysis

Actors

Status

Exception
1-p

p

generateData

Data

sendData

newData

x2

Figure 10: Multi-formalism model (QN and PN) of the CPS described in Section 4.1.

in the Analysis sequence diagram starting with the read-message
interaction is straightforward as shown in Figure 9.

Where Was I? is an inserted processing step (Refresh state) just
before predictive analytics. Is Everything OK? is the Status scenario
with its own processing steps. Are We There Yet? is the Polling
Scenario that repeatedly checks if a sensor reading has arrived. The
Actor scenario was included to model the processing that occurs
to correlate sensor readings and issue commands to the controlled
device. It does not include antipatterns.

4.2.2 Queuing Networks. The CPS presented in Section 4.1 is stud-
ied using a multi-class and multi-formalism model. Besides queue-
ing networks (QNs), we also make use of petri nets (PNs) to model
the intricate synchronization and coordination details of this case
study. Note that performance antipatterns are modeled using only
the QN formalism as described in Section 3. Such a model is solved
and analyzed using JSIMgraph, i.e., the simulator of JMT [3]. JSIM-
graph discards the initial transient and automatically stops when
the desired confidence interval is observed for all indices.

Themulti-formalismmodel is shown in Figure 10. Five job classes
are considered (i.e., Polling, Analysis, Status, Exception, and Actors)
and they are represented by different line styles in the model. All
these job types pass through a Delay station (i.e., the reference
station) and the Controller, modeled as a queue station with two
servers and a processor sharing (PS) queuing strategy. Service de-
mands of all job classes follow an exponential distribution and the
average demand for each station is shown in Table 5. For example,
the average service demand associated to the Polling task at the
Controller is 0.1 milliseconds. The only exception is the Status class

that spends a deterministic time at the Delay station. This is due to
the nature of this job class, i.e., a periodic check implemented in
the system.

Petri Nets are used to model the generation of data from sensors.
In fact, there is an extra job class, namely Data (i.e., dashed orange
line), that represents the data generated by sensors and processed
by the system. This way, we model the system polling the sensors
for data to be analyzed. The number of sensors sending data to
the system is 𝑁𝐷𝑎𝑡𝑎 , i.e., the number of Data jobs initialized in the
generateData delay center. Sensors generate and send new data to
the system every 𝑍𝐷𝑎𝑡𝑎 time units. Then, data are collected in the
Data PN place that can host only one request at a time. A sensor net
system such as this must be able to process arriving data readings
as quickly as they arrive. It is not acceptable to drop data. In this
model we use the power of the multi-formalism model to track the
number of failures: arrivals that would not be handled in a timely
manner. In the model, if new data arrives before the previous one is
polled by the system, then the oldest data is dropped, only the most
recent one is kept, and the number of failures is reported by the
model. In a sensor net system even one failure is unacceptable, but
it is vital to know if failures could occur when antipatterns exist.

A Polling job (i.e., solid line) models requests generated by the
controller to check if new sensor data is available. It goes to the
AnyData? PN place after being processed by the controller. Here,
it checks if data, generated by a sensor, is available in the Data
PN place. If data is found, then the getData transition fires and the
Polling job is switched to an Analysis job. This way, we model the
impossibility for Polling and Analysis jobs to coexist in the system.

Table 5: The average service demand [msec] of all job classes at each station. All service demands follow an exponential
distribution except the Status class at the Delay station, i.e., deterministic. Alongside the reference stations (i.e., Delay and
generateData), the number of jobs for each class is shown in parentheses. The dash (i.e., –) means that the job class is not
served by the station.

Station Polling Analysis Status Exception Actors Data
Controller 0.1 3.41 0.1 5 2.16 –
Database – 1.8 – – 1.2 –
Sensors – – 1 – – –
Delay 0.1 (𝑁 = 1) 0 (𝑁 = 0) 0.1 (𝑁 = 1) 0 (𝑁 = 0) 30 (𝑁 = 5) –

generateData – – – – – 60 (𝑁 = 8)

Table 6: Execution graph (EG) and queuing network (QN) results to assess the correctness of the adopted model.The 99% confi-
dence interval of JMT simulations is shown in parenthesis. The utilization error is the distance between the observed usages.
The system response time error is a mean absolute percentage error. Errors are computed wrt. average values.

Utilization System Response Time
Job Class EG [%] QN [%] Error (Diff.) [%] EG [msec] QN [msec] Error (MAPE) [%]
Analysis 17.4 17.8 (± 0.41) 0.4 5.53 5.35 (± 0.10) 3.18
Status 3.9 4.1 (± 0.08) 0.2 1.17 1.11 (± 0.02) 5.05
Actors 16.1 15.8 (± 0.46) 0.3 3.51 3.64 (± 0.07) 3.85
Polling 10.0 10.9 (± 0.30) 0.9 2.06 2.18 (± 0.04) 5.72

If no data has been generated yet, then the noData transition fires
and the Polling job goes back to the reference station where it stays
for 𝑍𝑃𝑜𝑙𝑙𝑖𝑛𝑔 time units before repeating the cycle.

The Analysis job (i.e., dashed line) models data generated by
sensors that must be analyzed by the controller and stored in the
database. It spends 𝑍𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 0 time units in the Delay center.
Hence, it is processed by the Controller and by the Database (repre-
sented as an infinite server) with service demands shown in Table
4. After the Database processing, the Analysis job is switched back
to the Polling class and goes to the reference station.

A Status job (i.e., dash dotted line) represents requests aimed to
check the status of sensors. It is processed by the controller after
it spent 𝑍𝑆𝑡𝑎𝑡𝑢𝑠 time units in the Delay station, i.e., a Status job
is generated every 𝑍𝑆𝑡𝑎𝑡𝑢𝑠 time units. It goes to the Sensors (i.e.,
infinite server) where it is served. With probability 1 − 𝑝 , no issue
is detected and the Status job goes back to the Delay. An Exception
(i.e., dash dot dotted line) is raised with probability 𝑝 and it must
be immediately (i.e., 𝑍𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 = 0 time units) handled by the
Controller. An exception raise is a rare event that is modeled by a
small value of 𝑝 . Once the Exception job is processed, it is switched
back to the Status class and it goes to the Delay to repeat the cycle.

An Actor (i.e., dotted line) is an entity that interacts with the
controller and the database, and it is used to see the effect of perfor-
mance antipatterns on the system. After waiting 𝑍𝐴𝑐𝑡𝑜𝑟 time units
in the Delay, the Actor job goes first through the Controller, then
to the Database, and finally goes back to the Delay station.

4.2.3 Model-based Performance Analysis. Results observed by solv-
ing the QN model in Figure 10 with JMT are compared to those
obtained solving the EG model with SPE·ED. We recall that the
input parameters used for evaluating the model in Figure 10 are
provided in Table 5.

10 2 100 102 104

Zpolling [msec]

0

2

4

6

8

Sy
st

em
 R

es
po

ns
e

Ti
m

e
[m

se
c]

Ractor
sys

Uctrl
40

50

60

70

80

90 Controller Utilization [%
]

Figure 11: Effect of Are We There Yet? software performance
antipattern on the sensor net system.

Table 6 shows the results. As performance indices of interest, we
analyzed the utilization of the Controller and the system response
time, both calculated for each job class. The Exception job class
is not shown in Table 6 since we assume the probability that a
status check generates an exception to be zero, i.e., 𝑝 = 0. For both
performance indices, the error made by using the multi-formalism
model is derived considering the average performance value ob-
tained solving the EG and QN models. The utilization error is the
difference between the two utilization values, i.e., |𝑈EG −𝑈QN |. The
error on the system response time is computed as themean absolute

percentage error (MAPE), i.e., |𝑅EG−𝑅QN |
𝑅EG

· 100.
Results demonstrate that the two models compare satisfactorily.

For example, in the first row of Table 6 we see that for the Analysis

10 3 10 2 10 1 100 101 102

Zstatus [msec]

3.5

4.0

4.5

5.0

5.5

Sy
st

em
 R

es
po

ns
e

Ti
m

e
[m

se
c]

Ranalysis
sys

Ractor
sys

Uctrl

40

45

50

55

60

65 Controller Utilization [%
]

(a) 𝑁𝑆𝑡𝑎𝑡𝑢𝑠 = 1

10 3 10 2 10 1 100 101 102

Zstatus [msec]

3.5

4.0

4.5

5.0

5.5

6.0

Sy
st

em
 R

es
po

ns
e

Ti
m

e
[m

se
c]

45

50

55

60

65

Controller Utilization [%
]

(b) 𝑁𝑆𝑡𝑎𝑡𝑢𝑠 = 5

10 3 10 2 10 1 100 101 102

Zstatus [msec]

4

5

6

7

Sy
st

em
 R

es
po

ns
e

Ti
m

e
[m

se
c]

50

60

70

80
Controller Utilization [%

]

(c) 𝑁𝑆𝑡𝑎𝑡𝑢𝑠 = 10

10 3 10 2 10 1 100 101 102

Zstatus [msec]

4

6

8

10

12
Sy

st
em

 R
es

po
ns

e
Ti

m
e

[m
se

c]

50

60

70

80

90

100 Controller Utilization [%
]

(d) 𝑁𝑆𝑡𝑎𝑡𝑢𝑠 = 20

Figure 12: Effect of Is Everything OK? software performance antipattern on the sensor net system when checked devices (i.e.,
sensors) do not return exceptions. The performance of the Controller is evaluated for different numbers of Status jobs.

job class the utilization estimated with the EG model is 17.4%, the
QN model instead evaluates 17.8% leading to an error of 0.4%. The
Polling job class shows the highest error observed for utilization
values, i.e., 0.9%. When considering the system response time, again
for the Analysis job class, the EGmodels estimates 5.53 ms, whereas
the QN model predicts 5.35 ms, hence we get an error of 3.18%. We
do not expect the models to match exactly because of the different
ways of modeling polling. Overall, albeit several approximations
introduced in both models, the maximum error observed is smaller
than 6% and it relates to the system response time only, whereas
the errors for the utilization are much lower. The QN model ade-
quately represents the case study performance and can be used to
investigate CPS antipatterns.

4.3 Antipattern Experiments
Here, we analyze the effect of the three performance antipatterns
on the sensor net system described in Section 4.1. To this end, we

use the multi-formalism model shown in Figure 10 and inject the
performance antipatterns as described in Section 3.

4.3.1 Are We There Yet? To investigate how the performance of
the CPS degrades when the controller is affected by Are We There
Yet? antipattern, we solve the multi-formalism model for different
intervals between two consecutive polls. This is accomplished by
changing the time that the Polling job spends in the delay center,
i.e., 𝑍𝑃𝑜𝑙𝑙𝑖𝑛𝑔 . For the sake of simplicity, we assume that the con-
troller has only one processor when studying this performance
antipattern. Results are shown in Figure 11, where the 99% confi-
dence interval (i.e., the shadowed area) for each measure is also
depicted. The system response time for the Actors job class (left y-
axis) and the controller utilization (right y-axis) are plotted against
the Polling think time (log scale). Less frequent polling (i.e., large
values of 𝑍𝑃𝑜𝑙𝑙𝑖𝑛𝑔) allows decreasing the controller usage as well as
the system response time of the Actors job class. When the polling
interval is short (i.e., 𝑍𝑃𝑜𝑙𝑙𝑖𝑛𝑔 is small) the controller looks for new

10 20 30
DCtrl

Analysis[msec]

1.0

1.5

2.0

2.5

3.0

3.5

Sy
st

em
 R

es
po

ns
e

Ti
m

e
[m

se
c]

Rstatus
sys

Ractor
sys

Uctrl

32.5

35.0

37.5

40.0

42.5

45.0 Controller Utilization [%
]

(a) System response time and utilization

5 15 25 35
DCtrl

Analysis[msec]

0

1

2

3

Dr
op

pe
d

Da
ta

 [d
at

a/
s]

0.0

0.2

0.4

0.6

0.8

1.0

Controller Utilization [%
]

(b) Dropped data

Figure 13: Effect ofWhereWas I? software performance antipattern on the sensor net system. Results are obtained considering
only 1 Actor and 1 Sensor in the system. Other input parameters are the same as those in Table 5.

data too often. This increases the controller usage tremendously
(up to 2.5x) and other jobs (i.e., Actors) experience a slower (i.e.,
1.3x) latency.

4.3.2 Is Everything OK?. The effect of this performance antipattern
on the CPS is depicted in Figure 12 varying the number of monitored
sensors. Periodically, the controller contacts sensors to check that
no problem has occurred. The negative effect of this performance
antipattern is especially visible when the number of monitored
sensors is large and the period between two consecutive status
checks is short. Note that, we assume the probability that a status
check raises an exception, 𝑝 , to be zero. This way, the controller
does not handle exceptions that require high processing capacity
(see Table 5). The system response time of Analysis and Actors job
classes (left y-axis), the controller utilization (right y-axis), and their
99% confidence interval (shadowed areas) are plotted against the
period between two status checks (log scale), i.e., the time spent by
a Status job at the delay center. Each simulation is run for a different
number of monitored sensors (i.e., 1, 5, 10, and 20). If a single sensor
is monitored by the controller, see Figure 12(a), the performance
degradation due to the antipattern is negligible, independently of
how frequently the controller contacts the sensor asking for its
status. When the controller monitors the status of many sensors, a
short 𝑍𝑆𝑡𝑎𝑡𝑢𝑠 makes the controller utilization higher (i.e., up to 2x,
the controller saturates for 𝑁𝑆𝑡𝑎𝑡𝑢𝑠 = 20) and the system response
time of other jobs served by the controller (i.e., Analysis and Actor)
dramatically deteriorates (i.e., 2.5x slower).

4.3.3 WhereWas I?. The effect on system performance of a process
the loses its state and must retrieve it is depicted in Figure 13. More
specifically, in Figure 13(a), the system response time of Status
and Actors job classes (left y-axis), the utilization of the controller
(right y-axis), and their 99% confidence interval (shadowed area)
are plotted against different values of 𝐷𝐶𝑡𝑟𝑙

𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
, i.e, the service

demand of Analysis jobs at the controller. The minimum value of

𝐷𝐶𝑡𝑟𝑙
𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

is the service demand shown in Table 5 (i.e., 3.42 ms).
Longer values are considered to represent the delay (i.e., Δ in Figure
6) required to recalculate the (lost) state and the processing time
required is large. Although a long 𝐷𝐶𝑡𝑟𝑙

𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
makes the controller

utilization increase (i.e., 1.3x), it does not affect the latency of other
jobs.

Figure 13(b) depicts the amount of data that would be dropped
every second against the Analysis service demand at the controller.
Since the system cannot poll and analyze data at the same time,
an Analysis job that requires extensive processing to restore its
state reduces the polling frequency and increases the amount of
data that cannot be processed in a timely manner. Dropping data
is unacceptable in a data acquisition system. If it happened in an
aircraft traffic data system that cannot keep pace with traffic data
in a congested area due to aWhere Was I? performance antipattern
consequences could be tragic.

5 THREATS TO VALIDITY
In this section, we discuss the main threats to validity exhibited by
our approach.

First, we are aware that generalization of results (i.e., external
validity) is not guaranteed, since our models have been applied
to one case study only, however the sensor net has been already
used as a representative example of CPS in software performance
engineering research, as confirmed by [32]. We also studied abstract
models of antipattern performance that apply to many other types
of systems in section 3. We expect that it is possible to generalize
our results and findings to situations that embody the bad practices
described in [30].

Second, to mitigate threats to internal validity, we designed our
experiments with the goal of having a direct manipulation on the
performance indices of interest. For instance, the baseline queuing
model (see Figure 3) shows input parameters that lead to 0.4 as
utilization of the device. This choice is motivated by the illustration

purpose of studying variations when performance antipatterns are
put in place (see Figure 7). Moreover, the choice of using Queuing
Networks as the target notation for modelling antipatterns does not
reduce the applicability of our approach. In the case study, we also
used Petri Nets to model application peculiarities (i.e., process syn-
chronization), and the resulting multi-formalism model is still valid
to provide the evidence of antipatterns on the system performance.
In general, any formalism can be adopted to model antipatterns as
long as it is suitable to express execution times subject to variations.
We plan to further experiment this point by investigating other
languages to model antipatterns.

Third, to smooth construct validity threats, i.e., the assessment
of the validity of the metrics used during our experimentation, we
set that all simulations undergo a 99% confidence interval, so the
accuracy of numerical results has been monitored.

6 RELATEDWORK
The work presented in this paper relates to two main streams of
research that we review in the following.

Software Performance Antipatterns. They have been defined in the
literature as bad practices leading to performance issues [27, 29],
and very recently customized for the CPS domain in [30]. Our
recent work focused on investigating the performance antipat-
terns across the operational profile space [6], previously defined
with a first-order logic representation, and later applied to multiple
modelling notations, specifically in a general-purpose language
(UML), a domain-specific language (Palladio), and an architecture
description language (Æmilia). A first attempt of adopting software
performance antipatterns in running systems is provided in [40],
where the root causes of performance problems are isolated and
matched with the specification of antipatterns. More recently, load
testing and profiling data is exploited to detect software perfor-
mance antipatterns when running java applications in [38]. In the
broader context of matching the connections between (anti)patterns
and quality attributes (such as reliability, security, etc.), several ap-
proaches e.g., [11, 14, 17, 25] are representative.

Performance Evaluation of CPS. In literature several approaches
have been defined for the modelling of CPS (e.g., [18, 20, 26]) and
its security-related aspects (e.g., [23, 37, 42]). Performance analysis,
instead, was mainly focusing on real-time embedded systems, we
refer the reader to [43] for a broader investigation. As opposite, CPS
demands for a plethora of performance evaluation techniques [4],
and there exists two macro classes: (i) the analytical and (ii) the
simulation analysis. Analytical approaches use mathematical for-
mulas or equations that are formal and rigorous, but they may
fail to capture some system dynamics (e.g., unexpected events, un-
certainties, transient states) that can be expressed in simulation
environments (i.e., emulating the system behavior) at the cost of less
scalability [13, 45, 46]. Co-simulation has also been more recently
proposed with the goal of possibly integrating multiple and hetero-
geneous models [22]. In [24] a linear stochastic model is adopted
to quantify the performance degradation of CPS when exposed
to integrity attacks. In [12] analytical models are adopted to de-
rive asymptotic and worst case scenarios for performance analysis.
In [44] the performance evaluation is conducted through a control
law that undergoes a trade-off analysis including privacy costs.

In [7] Markov models are applied in the intelligent transportation
system domain, and traffic is guided by model predictions. When
focusing on the software performance engineering community, it
is worth mentioning several frameworks that have been introduced
in the literature for performance modeling and analysis of software
systems. For example: (i) the Core Scenario Model (CSM) [41], (ii)
Klaper [8], (iii) the Performance Model Interchange Format (PMIF)
and Software-PMIF (S-PMIF) [31], (iv) the Palladio Component
Model (PCM) [2], and (v) Descartes [19]. However, to the best of
our knowledge, none of these frameworks is specifically tailored
to modelling the detection and the fixing of software performance
antipatterns in CPS [30], as in our investigation in this paper.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a novel approach to model and analyze
software performance antipatterns in the context of cyber-physical
systems. Queuing networks are adopted as the performance mod-
eling formalism of choice, and performance results confirm the
usefulness of our models. For all the three software antipatterns
considered in this paper, we propose a QN model to investigate
its effect on the system performance. We always observe the sys-
tem response time increasing and the system bottleneck switching.
Modeling software antipatterns with QN allows keeping track of
performance problems and quantitatively evaluating their effect
on the system performance. A sensor net case study is proposed to
quantify the performance impact of antipatterns, and experimental
results demonstrate the effectiveness of our approach. When evalu-
ating the system performance indices, we found that antipatterns
may worsen the response time and resource utilization up to 2.5x.
This data encourages detecting bad practices early in the design
process.

As future work, we plan to automate the detection of software
antipatterns by building a framework that (i) keeps track of the
required information (e.g., frequency of checking the status of a
resource), and (ii) exploits the performance analysis results as the ba-
sis for antipattern solutions. For instance, knowing the point where
the system bottleneck switches is of key relevance to prevent it.
Moreover, we are also interested in investigating the guiltiness of
antipatterns wrt. requirements, i.e., how much antipatterns con-
tribute to the violation of requirements. This way, we can prioritize
those antipatterns to solve first. Finally, we plan to investigate other
CPS case studies, possibly from an industrial context, in order to bet-
ter investigate the performance impact of antipatterns in different
application domains.

ACKNOWLEDGMENTS
Thiswork has been partially funded byMIUR PRIN project 2017TWR-
CNB SEDUCE (Designing Spatially Distributed Cyber-Physical Sys-
tems under Uncertainty).

REFERENCES
[1] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Mee-

deniya. 2013. Software Architecture Optimization Methods: A Systematic Litera-
ture Review. IEEE Trans. Software Eng. 39, 5 (2013), 658–683.

[2] Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio Component
Model for Model-driven Performance Prediction. Journal of Systems and Software
82, 1 (2009), 3–22.

[3] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance
engineering tools for system modeling. SIGMETRICS Perform. Eval. Rev. 36, 4
(2009), 10–15.

[4] André B Bondi. 2015. Foundations of software and system performance engineer-
ing: process, performance modeling, requirements, testing, scalability, and practice.
Pearson Education.

[5] Tomás Bures, Vladimír Matena, Raffaela Mirandola, Lorenzo Pagliari, and Catia
Trubiani. 2018. Performance Modelling of Smart Cyber-Physical Systems. In
Proceedings of the International Conference on Performance Engineering (ICPE).
37–40.

[6] Radu Calinescu, Vittorio Cortellessa, Ioannis Stefanakos, and Catia Trubiani. 2020.
Analysis and Refactoring of Software Systems Using Performance Antipattern
Profiles. In Proceedings of the International Conference on Fundamental Approaches
to Software Engineering (FASE). 357–377.

[7] Chen Chen, Xiaomin Liu, Tie Qiu, and Arun Kumar Sangaiah. 2020. A short-
term traffic prediction model in the vehicular cyber–physical systems. Future
Generation Computer Systems 105 (2020), 894–903.

[8] Andrea Ciancone, Mauro Luigi Drago, Antonio Filieri, Vincenzo Grassi, Heiko
Koziolek, and Raffaela Mirandola. 2014. The KlaperSuite framework for model-
driven reliability analysis of component-based systems. Software and System
Modeling 13, 4 (2014), 1269–1290.

[9] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-Based
Software Performance Analysis. Springer.

[10] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[11] Daniel Feitosa, Apostolos Ampatzoglou, Paris Avgeriou, Alexander Chatzigeor-
giou, and Elisa Yumi Nakagawa. 2019. What can violations of good practices tell
about the relationship between GoF patterns and run-time quality attributes?
Inf. Softw. Technol. 105 (2019), 1–16.

[12] Allan Edgard Silva Freitas and Romildo Martins da Silva Bezerra. 2015. Perfor-
mance Evaluation of Cyber-Physical Systems. ICIC Express Letters 10, 2 (2015).

[13] Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nystrom, Levon
Saldamli, David Broman, and Anders Sandholm. 2006. OpenModelica-A free
open-source environment for system modeling, simulation, and teaching. In
Proceedings of the International Conference on Control Applications (ICoCTA).
1588–1595.

[14] Matthias Galster and Paris Avgeriou. 2012. Qualitative Analysis of the Impact of
SOA Patterns on Quality Attributes. In Proceedings of International Conference on
Quality Software (QSIC). 167–170.

[15] Abel Gómez, Connie U Smith, Amy Spellmann, and Jordi Cabot. 2018. Enabling
performance modeling for the masses: Initial experiences. In Proceedings of the
International Conference on System Analysis and Modeling (SAM). 105–126.

[16] Mark Harman and Peter W. O’Hearn. 2018. From Start-ups to Scale-ups: Op-
portunities and Open Problems for Static and Dynamic Program Analysis. In
Proceedings of the International Working Conference on Source Code Analysis and
Manipulation (SCAM). 1–23.

[17] Geoffrey Hecht, Benjamin Jose-Scheidt, Clement De Figueiredo, Naouel Moha,
and Foutse Khomh. 2014. An Empirical Study of the Impact of Cloud Patterns
on Quality of Service (QoS). In Proceedings of International Conference on Cloud
Computing Technology and Science (CloudCom). 278–283.

[18] Christian Heinzemann, Steffen Becker, and Andreas Volk. 2019. Transactional
execution of hierarchical reconfigurations in cyber-physical systems. Softw. Syst.
Model. 18, 1 (2019), 157–189.

[19] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, and Manuel
Bähr. 2017. Model-Based Self-Aware Performance and Resource Management
Using the Descartes Modeling Language. IEEE Trans. Software Eng. 43, 5 (2017),
432–452.

[20] Kim Guldstrand Larsen. 2017. Validation, Synthesis and Optimization for Cyber-
Physical Systems. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Vol. 10205.
3–20.

[21] E. D. Lazowska, J. Zahorjan, G. Scott Graham, and K. C. Sevcik. 1984. Computer
System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood
Cliffs.

[22] Giovanni Liboni, Julien Deantoni, Antonio Portaluri, Davide Quaglia, and Robert
De Simone. 2018. Beyond time-triggered co-simulation of cyber-physical systems
for performance and accuracy improvements. In Proceedings of the International
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO). 1–8.

[23] An-Yang Lu and Guang-Hong Yang. 2020. Stability Analysis for Cyber-Physical
Systems Under Denial-of-Service Attacks. IEEE Trans. on Cybernetics (2020),
1–10.

[24] Yilin Mo and Bruno Sinopoli. 2016. On the Performance Degradation of Cyber-
Physical Systems Under Stealthy Integrity Attacks. IEEE Trans. Automat. Contr.
61, 9 (2016), 2618–2624.

[25] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2009. Decor: A method for the specification and detection of code and
design smells. IEEE Trans. Software Eng. 36, 1 (2009), 20–36.

[26] Pierluigi Nuzzo, Jiwei Li, Alberto L. Sangiovanni-Vincentelli, Yugeng Xi, and
Dewei Li. 2019. Stochastic Assume-Guarantee Contracts for Cyber-Physical
System Design. ACM Trans. Embed. Comput. Syst. 18, 1 (2019), 2:1–2:26.

[27] Trevor Parsons and John Murphy. 2008. Detecting Performance Antipatterns in
Component Based Enterprise Systems. J. Object Technol. 7, 3 (2008), 55–91.

[28] Dorina C. Petriu, Mohammad Alhaj, and Rasha Tawhid. 2012. Software Perfor-
mance Modeling. In Formal Methods for Model-Driven Engineering - International
School on FormalMethods for the Design of Computer, Communication, and Software
Systems SFM (Lecture Notes in Computer Science, Vol. 7320). Springer, 219–262.

[29] C.U. Smith and L.G. Williams. 2002. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley.

[30] Connie U. Smith. 2020. Software Performance Antipatterns in Cyber-Physical
Systems. In Proceedings of the International Conference on Performance Engineering
(ICPE). 173–180.

[31] Connie U Smith, Catalina M Lladó, and Ramon Puigjaner. 2010. Performance
Model Interchange Format (PMIF 2): A comprehensive approach to queueing
network model interoperability. Performance Evaluation 67, 7 (2010), 548–568.

[32] Connie U. Smith and Amy Spellmann. 2017. Automated Performance Modeling
for IoT Systems. In L&S Computer Technology, Inc. https://bit.ly/3jNeocC

[33] Connie U Smith and Lloyd G Williams. 2000. Software performance antipatterns.
In Proceedings of the International Workshop on Software and Performance (WOSP).
127–136.

[34] Connie U Smith and Lloyd G Williams. 2002. New software performance antipat-
terns: More ways to shoot yourself in the foot. In Proceedings of the International
Conference on Computer Measurement Group (CMG). 667–674.

[35] Connie U Smith and Lloyd G Williams. 2003. More new software performance
antipatterns: Even more ways to shoot yourself in the foot. In Proceedings of the
International Conference on Computer Measurement Group (CMG). 717–725.

[36] Jonette M Stecklein, Jim Dabney, Brandon Dick, Bill Haskins, Randy Lovell, and
Gregory Moroney. 2004. Error cost escalation through the project life cycle.
NASA Technical Report (2004).

[37] Ashraf Tantawy, Sherif Abdelwahed, Abdelkarim Erradi, and Khaled Shaban.
2020. Model-based risk assessment for cyber physical systems security. Computers
& Security 96 (2020), 101864.

[38] Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, and Holger
Knoche. 2018. Exploiting load testing and profiling for Performance Antipattern
Detection. Inf. Softw. Technol. 95 (2018), 329–345.

[39] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi. 2005. An analytical model for multi-tier internet services and
its applications. ACM SIGMETRICS Performance Evaluation Review 33, 1 (2005),
291–302.

[40] Alexander Wert, Jens Happe, and Lucia Happe. 2013. Supporting swift reaction:
automatically uncovering performance problems by systematic experiments.
In Proceedings of the International Conference on Software Engineering (ICSE).
552–561.

[41] C. Murray Woodside, Dorina C. Petriu, Dorin Bogdan Petriu, Hui Shen, Toqeer
Israr, and José Merseguer. 2005. Performance by unified model analysis (PUMA).
In Proceedings of the International Workshop on Software and Performance, (WOSP).
1–12.

[42] Zhiyan Xu, Debiao He, Huaqun Wang, Pandi Vijayakumar, and Kim-Kwang Ray-
mond Choo. 2020. A novel proxy-oriented public auditing scheme for cloud-based
medical cyber physical systems. Journal of Information Security and Applications
51 (2020), 102453.

[43] Ti-Yen Yen and Wayne Wolf. 1998. Performance estimation for real-time dis-
tributed embedded systems. IEEE Trans. on Parallel and Distributed Systems 9, 11
(1998), 1125–1136.

[44] Heng Zhang, Yuanchao Shu, Peng Cheng, and Jiming Chen. 2016. Privacy and
performance trade-off in cyber-physical systems. IEEE Network 30, 2 (2016).

[45] Zhenkai Zhang, Emeka Eyisi, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai,
and Janos Sztipanovits. 2014. A co-simulation framework for design of time-
triggered automotive cyber physical systems. Simulation Modelling Practice and
Theory 43 (2014), 16–33.

[46] Zhenkai Zhang, Joseph Porter, Emeka Eyisi, Gabor Karsai, Xenofon Koutsoukos,
and Janos Sztipanovits. 2013. Co-simulation framework for design of time-
triggered cyber physical systems. In Proceedings of the International Conference
on Cyber-Physical Systems (ICCPS). 119–128.

https://bit.ly/3jNeocC

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Software Performance Antipatterns
	2.2 Smart Parking System

	3 Our approach
	3.1 Baseline
	3.2 Modeling
	3.3 Analysis

	4 Case study
	4.1 Description
	4.2 Performance Models
	4.3 Antipattern Experiments

	5 Threats to validity
	6 Related work
	7 Conclusion and future work
	References

