
Stochastic analysis of energy consumption in

pool depletion systems

D. Cerotti, M. Gribaudo, R. Pinciroli, G. Serazzi

Dip. di Elettronica, Informazione e Bioingengeria, Politecnico di Milano,
via Ponzio 34/5, 20133 Milano, Italy,

[davide.cerotti,marco.gribaudo,riccardo.pinciroli,giuseppe.serazzi]@polimi.it

Abstract. The evolutions of digital technologies and software applica-
tions have introduced a new computational paradigm that involves ini-
tially the creation of a large pool of jobs followed by a phase in which
all the jobs are executed in systems with limited capacity. For example,
a number of libraries have started digitizing their old books, or video
content providers, such as YouTube or Netflix, need to transcode their
contents to improve playback performances. Such applications are char-
acterized by a huge number of jobs with different requests of computa-
tional resources, like CPU and GPU. Due to the very long computation
time required by the execution of all the jobs, strategies to reduce the
total energy consumption are very important.

In this work we present an analytical study of such systems, referred to
as pool depletion systems, aimed at showing that very simple configura-
tion parameters may have a non-trivial impact on the performance and
especially on the energy consumption. We apply results from queueing
theory coupled with the absorption time analysis for the depletion phase.
We show that different optimal settings can be found depending on the
considered metric.

Key words: stochastic models, energy efficiency, performance evalua-
tion

1 Introduction

In this paper we focus on systems in which there is a fixed and huge number of
jobs, referred to as a pool, waiting to be admitted for execution in a set of ser-
vice centers with limited capacity. Many current real life problems require models
with this structure. For example, video content providers, such as YouTube or
NetFlix, often need to transcode a huge pool of videos [6] to multiple formats
suitable to be sent and playback by several different devices (e.g. smart-phone,
smart-TV, tablet, . . .). Similarly, several big data applications generate during
the map phase a huge pool of data that can subsequently be split and executed
in parallel on different systems with limited capacity for performance reasons.
The behavior of this system can be regarded as divided into two phases. An
initial phase, in which the system is loaded with the maximum number of jobs

2 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

allowed, and every job completed is immediately replaced by another one admit-
ted from the pool. Then, when the pool empties a new phase starts, referred to
as depletion phase, and the number of jobs in execution continues to decrease
until all jobs are completed.
Since the jobs may have very different resource demands, in our analysis we
consider multi-class workloads. To study the behavior of this type of systems,
that are not at the equilibrium, we applied the stochastic analysis implementing
the CTMC of the different cases.
The problem approached is: given a workload, i.e., pool size and characteristics
of the classes of jobs (service demands and fractions in execution), and a sys-
tem with finite capacity study a scheduling admission policy so that the global
amount of time to execute the complete pool of jobs, i.e., the duration of the
full capacity phase plus the depletion phase, is minimized.
To reach this objective, the load admission policy that schedule the sequence of
executions must be able to fully exploit the capacity of all the resources of the
system. In other words, the saturation of the resources must be reduced as much
as possible controlling the bottlenecks. Let us remark that minimizing the time
required from the execution of the complete workload is equivalent to minimize
the energy required for this task. Thus, we may say that our ultimate objective
is to minimize the energy needed to execute a workload through a suitable ad-
mission policy based on the bottleneck control.
We adopt known results of queuing networks for the full capacity phase, and
the absorption time analysis for the depletion phase. By queuing theory, it is
known that the performance of systems with multi-class workloads depends on
the fraction of the classes of jobs in execution (referred to as population mix).
More precisely, given the service demands of the classes, it is possible to identify a
set of population mixes that saturate more than one resource concurrently. More-
over, one of these population mixes allow resources to be equiutilized regardless
the population sizes. This operational condition is optimal since it maximizes
the utilization of all the resources and thus the system throughput [16].
The main objectives are to study the impact of both the size of the job pool
and the maximum processing capacity, in term of maximum number of jobs in
execution, to the depletion time. Moreover, in multi-class workload, we want to
examine the effect of the population mix to optimize depletion time, energy con-
sumption, and response time in order to identify an optimal trade-off between
them.
The remainder of the paper is structured as follows. In Section 2 we review some
metrics used for energy consumption measurement. Section 3 presents in detail
the pool depletion models both with single and multi-class workload and the
Markov Chains utilized. In Section 4 we investigate the behavior of the model
and show that the energy consumption is minimized when the system works
with an optimal population mix. Section 5 concludes the paper and presents
some future directions of work.

Stochastic analysis of energy consumption in pool depletion systems. 3

2 Energy consumption

Several works, e.g. [7], [15], show the existence of a linear relationship between
the power consumption of a server and the utilization of its CPU. For such
reason, a widespread used approximation of the power consumption P (U) of a
server is given by:

P (U) = Pidle + U (Pmax − Pidle) (1)

where Pidle is the power consumed when no user applications are running, Pmax

is the power drawn by the fully utilized server and U is the CPU utilization.
Many improvements of this model have been proposed to take into account
other devices likes memory [12] or disks [5], and consider non-linearity measured
in some real applications.

Since the global energy consumed by a task of duration T can be computed as
E = P ·T , there is a trade-off between two factors. On one hand, Eq. 1 suggests
to reduce the utilization to decrease the power consumption; on the other, a low
utilization yields a low server productivity, increasing the time T required to
complete the given task and thus also the energy consumed. In addition, there is
a related trade-off between the energy consumed and the performance provided
by the system. Energy-Response time Product (ERP), also known as Energy-
Delay Product (EDP), and Energy-Response time Weighted Sum (ERWS) are
two metrics widely used to evaluate the performance-energy trade-off of a system.
Both of depend on the total energy consumption (E) and the response time (R).
The index ERP [8, 9, 11, 13] is defined as their product:

ERP = E R, (2)

whereas ERWS [1–3, 10] is defined as their weighted sum:

ERWS = w1 R+ w2 E, w1, w2 ≥ 0. (3)

The average energy consumed per job EJ is a further metric to compute such
trade-off [4]. It is defined as:

EJ =
E

C
=

P · T

C
=

P

X
, (4)

where C is number of jobs completed during a time interval of length T and X
is the system throughput. Equation 4 holds for a resource processing a single-
class workload, but it is not fair with a workload composed by jobs of different
classes, especially when the time required to complete a job varies significantly
according to its class. To overcome such problem, exploiting the utilization law

a multi-class extension of Eq. 4 has been proposed as:

EJ = D
P

U
, (5)

where D is the aggregate demand (i.e. the total service demand of all the classes)
and U is the resource utilization. The details of the Eq. 5 derivation and its
extension to take into account systems composed of several resources can be
found in [4].

4 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

3 Model description

Let us consider the depletion model of a system composed by two resources
r1 and r2 as shown in Figure 1. Resources can represent important parts of
a computing architecture: in the following we will use one resource to model a
single-core CPU, and the other to model a GPU. The system executes two classes
of jobs A and B. Each class requires an exponentially random distributed amount
of execution time at each resource, and it is characterized by its average Drc,
with r ∈ {1, 2} and c ∈ {A,B}. The two resources satisfy the classical BCMP
assumptions: they either work in processor sharing, or in first-come-first-served
with all the requests of identical size, but possibly with different visit ratio. The
total number of jobs that must be executed in the two classes are respectively
NA and NB. However, only K = kA + kB jobs are executed in parallel, with kA
jobs of class A and kB jobs of class B. We call this constraint as Finite Capacity

Region (FCR).Whenever a class A job completes and leaves the system, another
class A jobs is started. If all the class A jobs are finished, but there are still
class B jobs to be executed, class B jobs enter the system in place of class A
jobs, to maintain its workload to K jobs. If there are no more jobs waiting to be
executed, as soon as a job finishes, it is not replaced by other activity until all
the NA+NB jobs have been completed. Class B jobs behaves in the symmetrical
way.

Job pool

Χ
Scheduler

Finite capacity region

NA

K = kA + kB

D1B D2B

NB

D1A D2A

Fig. 1: A pool depletion model with two class and two resources.

Figure 2 shows the temporal evolution of the system. First jobs are loaded
from the pool into the first resource, until the size of the FCR is reached (Phase
0). To simplify the presentation, we will consider the duration of this phase to
be negligible, and we consider the system starting from a state in which there
are kA class A jobs and kB class B jobs in execution in the first resource r1.
During normal execution, as soon as one job finishes, another one of the same
class immediately starts (Phase I): this is the time in which the system works
at regime, and it is also the moment in which optimization can take place. As
soon as the jobs of one class in the pool finishes, the system moves to Phase

II, where the scheduler cannot really perform a decision since it can only start
jobs of the remaining class to fill the number of tasks in concurrent execution.

Stochastic analysis of energy consumption in pool depletion systems. 5

Finally, when there are no more new jobs that can be started, the depletion

phase begins (Phase III).In this case the number of jobs in execution reduces
progressively until all the tasks have been completed. Note that both in Phase

II and Phase III, one class of jobs might finish much earlier than the other,
reducing the system to a single class behavior.

Time

Jo
bs

 in
 e

xe
cu

tio
n

O

I II

III

Fig. 2: Temporal evolution of the system.

For each model we construct the corresponding underlying CTMC. Even if
the proposed model seems to be very simple, the underlying Markov process is
characterized by lot of asymmetries that makes its description a bit involved. To
simplify the presentation, we start by presenting a simple single-class example
with fixed parameters, and then we extend it to the two-classes general case.

3.1 Single-class model

(3,2,0)

(3,1,1)

(3,0,2)

(2,2,0)

(2,1,1)

(2,0,2)

(1,2,0)

(1,1,1)

(1,0,2)

(0,2,0)

(0,1,1)

(0,0,2)

(0,1,0)

(0,0,1)

(0,0,0)

µ1

µ1

µ1

µ1

µ1

µ1

µ1

µ1 µ1

µ2

µ2

µ2

µ2

µ2

µ2

µ2

µ2

µ2

Phase II Phase III

Fig. 3: The CTMC corresponding to a single class system with NA = 5 and
kA = 2.

6 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

Let us consider a single-class model with NA = 5 jobs to be completed, in
which K = kA = 2 jobs at a time are executed in parallel by the system. The
corresponding CTMC is shown in Figure 3, and its state is identified by a tuple:
(nOA, n1A, n2A), where nOA is the number of jobs that are still waiting to be
started, n1A is the number of jobs in resource r1 and n2A is the number of jobs
in resource r2.
Since we ignore the loading phase, all jobs that can be immediately executed
starts in resource r1. For this reason the initial state of the CTMC is (nOA −
n1A, n1A, 0) = (3, 2, 0). Let us call µ1 = 1/D1A the rate at which jobs leaves
resource r1, and µ2 = 1/D2A the rates at which jobs complete their execution.
Jobs always leave from r1 to r2 at rate µ1, producing a transition from state
(nOA, n1A, n2A) to state (nOA, n1A− 1, n2A+1). The effect of the end of service
at resource r2 is different depending on whether there are jobs waiting to start
(nOA > 0 - Phase II in Figure 2). If this is the case, the system performs a
transition from state (nOA, n1A, n2A) to state (nOA− 1, n1A+1, n2A− 1) at rate
µ2 corresponding to the fact that whenever a job exits the system from resource
r2, one of the waiting job is immediately started at r1. If instead the jobs waiting
to be started are finished (nOA = 0 - Phase III in Figure 2), the system starts
working on one less job performing a transition from state (0, n1A, n2A) to state
(0, n1A, n2A − 1), always at rate µ2. When the last job ends, the system jumps
in the absorbing state (0, 0, 0).

3.2 Multi-class model

Figure 4 shows the basic transition structure of the CTMC underlying a two-
class model. To simplify the presentation, only outgoing arcs are shown. In the
two class case, the state is characterized by a six components tuple:

(nOA, nOB, n1A, n1B, n2A, n2B)

which contains the count of jobs waiting outside, being executed at r1 or at r2 for
both classes. If n1A +n1B > 0, jobs can complete their service at resource r1. In
this case we can have a transition either to state (nOA, nOB, n1A− 1, n1B, n2A+
1, n2B) or to state (nOA, nOB, n1A, n1B − 1, n2A, n2B + 1) at rate µ1c (with c ∈
{A,B}):

µ1c =
n1c

n1A + n1B

1

D1c

. (6)

The first part of the equation represents the processor sharing policy used by
the resource. The end of service of a job at resource r2 can instead trigger four
different types of behaviors, each leading to a different pattern for the next state.
Let us focus on a class A job: the case for class B will be symmetrical.
If the there are still class A jobs waiting to be started (nOA > 0 - Phase I in
Figure 2), the system will allow a new class A job to start its execution. This
leads the system to state (nOA − 1, nOB, n1A + 1, n1B, n2A − 1, n2B) and it is
represented in the figure by arrows drawn with a continuous line.
If there are no more class A jobs waiting to be started (nOA = 0) but still class

Stochastic analysis of energy consumption in pool depletion systems. 7

(nOA-1,nOB,n1A+1,n1B,n2A-1,n2B)

(nOA,nOB,n1A,n1B,n2A,n2B)

(nOA,nOB-1,n1A,n1B+1,n2A,n2B-1)

(nOA,nOB,n1A,n1B-1,n2A,n2B+1)(nOA,nOB,n1A-1,n1B,n2A+1,n2B)

(0,nOB-1,n1A,n1B+1,n2A-1,n2B)

(nOA-1,0,n1A+1,n1B,n2A,n2B-1)

(0,0,0,0,0,0)

µ1A µ1B

µ2A

µ2B

µ2A

µ2B

(0,0,n1A,n1B,n2A-1,n2B)

µ2A

(0,0,n1A,n1B,n2A-1,n2B)

µ2B

µ2A or µ2B

Normal transitions

When outside jobs of one class are finished

When outside jobs of both classes are finished

Transitions to the absorbing state

 Key

Phase I

Phases IIPhase III

All Phases All Phases

Phase I
Phases IIPhase III

Fig. 4: Portion of the CTMC corresponding to a two class system.

B jobs (nOB > 0 - Phase II in Figure 2), then the end of a class A job triggers
the start of a class B job to exploit the maximum parallel running capacity K
of the system. This is represented in Figure 4 as a dashed arrow, and leads the
system to state (0, nOB − 1, n1A, n1B + 1, n2A − 1, n2B).
If there are no more jobs to be started of either classes (nOA = 0 and nOB = 0 -
Phase III in Figure 2), then the system starts working with less than K jobs in
parallel, by jumping to state (0, 0, n1A, n1B, n2A − 1, n2B). This is the depletion
phase, which is represented in the figure by a dotted line.
Finally, when the last job ends the system jumps to the absorbing state (0, 0, 0, 0, 0, 0).
This is represented with a dash-dotted line in the figure. Again, due to the pro-
cessor sharing nature of the system, ending of jobs at resource r2 occurs at rate
µ2c (with c ∈ {A,B}):

µ2c =
n2c

n2A + n2B

1

D2c

. (7)

3.3 Model Analysis

In order to compute the depletion time, we apply the well-known technique
for the evaluation of the upto-absorption time. Let us consider the CTMC of
the general model with absorbing state (0,0,0,0,0,0) and infinitesimal generator
matrix Q = [qij] and let us call B the set of non-absorbing states. We define the
mean time spent by the CTMC in state i until absorption as zi =

∫

∞

0
πi(τ)dτ ,

where πi(τ) is the unconditional probability of the CTMC being in state i at

8 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

time τ . The row vector z = [zi] satisfies the following equation:

z QB = −πB(0), (8)

where πB and QB are the transient probability vector and the infinitesimal
generator matrix restricted to the non-absorbing states only. Following [14], the
mean time to absorption T of the CTMC can be computed from the solution of
Eq. 8:

T =
∑

i∈B

zi .

If we call Pi the average power consumed in state i, then the average total energy
consumed by the system is:

E =
∑

i∈B

zi · Pi .

In a similar way, if we call uri an indicator function that tells us if a resource r
is used in state i, φi(X) an indicator function that tells us if state i belongs to
phase X ∈ {I, II, III}, and mi the number of jobs in the FCR in state i, then
we can compute the average utilization Ur of resource r, the average time Φ(X)
spent in phase X , and the average number of jobs in the FCR as:

Ur =
1

T

∑

i∈B

zi · uri Φ(X) =
∑

i∈B

zi · φi(X) M =
1

T

∑

i∈B

zi ·mi . (9)

4 Results

We have implemented the model described in Section 3 and run several analyt-
ical experiments both with single-class and multi-class workloads. Models are
analyzed by generating their underlying CTMC and solving it according to Sec-
tion 3.3 using a linear algebra library implemented in C language. Performance
indices can be computed in few minutes on a standard Linux laptop even for
the cases with the largest state space. In particular, the size of the state space
can vary from 201 states when we work with a single-class model and K = 1, to
470 771 states when we are considering the multi-class model with K = 40.

4.1 Single-class model

In the first set of experiments, we analyze the pool depletion system working
with single-class workloads. In particular, we want to characterize the behavior
of the model as a function of the number of jobs simultaneously admitted into
the FCR.

The total number of jobs in the system is NA + NB = 100, and the service
demands Dr used in the experiments for the two resources are given in Table 1.
The number of jobs that can enter the FCR at the same time varies from K = 1

Stochastic analysis of energy consumption in pool depletion systems. 9

Table 1: Service demands used for the single-class model.
Conf. 1 Conf. 2 Conf. 3 Conf. 4

D1 0.75 0.64 1.95 1.2
D2 0.48 1.25 0.6 1.6

to K = 100. In case of K = 1, only one job can be processed at once. When
K = 100, all the jobs that are in the system can enter the FCR and they are
concurrently serviced with a processor sharing policy.

Fig. 5 shows the performance indexes of the pool depletion systems with
single-class workloads as a function of the FCR size K. In order to emphasize
the results for small values of K, a base-10 log scale is used on the x-axis.

The energy consumption is computed setting the idle power consumption of
system Pidle = 70 Watt, the maximum power of the system when only resource
r1 is used Pbusy1 = 160 Watt, the maximum power when only resource r2 is used
Pbusy2 = 130 Watt and the maximum power of the system when both resources
are used Pbusy = 210 Watt. As shown in Fig. 5a, larger values of K reduce the
energy consumption, since they reduce the total completion time.

Fig. 5b shows the average response time to complete a job: the average time
a job is running. This index does not account for the time spent outside the
FCR, and it is computed using Little’s law as:

R =
M

X
=

M

(NA +NB)/T

where M is the average number of jobs in the FCR defined in Eq. 9. As it can be
seen, R increases with K since resources are shared by a larger number of jobs.
ERP and ERWS are plotted in Fig. 5c and Fig. 5d, respectively. For ERWS, we
define w1 and w2 in order to normalize the values of response time and energy
consumption. Thus, for each configuration, w1 is set to 1/max(Rk) ∀k and w2

is set to 1/max(Ek) ∀k, where k is the number of considered jobs into the FCR.
ERP identifies Conf. 1 as the best configuration and the optimal point is

when only a job is in the FCR. Instead, for ERWS the best configuration is
Conf. 4 and the minimum coincides with four jobs concurrently executed by the
system1.

4.2 Multi-class model

Next, we consider a multi-class model where the total number of jobs in the
system is NA +NB = 80 and the number of jobs admitted in the FCR K = 20.
We consider the following service demands:

D1A = 0.26 D1B = 0.01
D2A = 0.08 D2B = 0.19

.

1 Providing evidence about which is the best metric between ERP and ERWS is out
of the purposes of this paper.

10 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

(a) Energy consumption (b) Response time

(c) ERP (d) ERWS

Fig. 5: Performance indexes for the single-class system.

In Fig. 6, we plot the main performance indexes as a function of the inner
population mix kA and kB. Each curve corresponds to a different outer popu-
lation mix NA and NB. The dashed line is the outer population mix for which
the system can provide the best result. Note that, the optimal outer population
mix can slightly change based on the considered index. We now consider two
more indexes (i.e. depletion time T and the energy per job EJ) since, with
multi-class workloads, they behave differently from the energy consumption E.
In particular, we evaluate EJ using Eq. 5:

EJ = D
P

U
=

(

∑

r,c

Drc

)

E
T

U1 + U2

,

where Ur is computed according to Eq. 9 and the average power consumption
P is computed dividing the average energy E by the average total time T .
We plot energy consumption in Fig. 6a. We used the same values of power as

Stochastic analysis of energy consumption in pool depletion systems. 11

for the single-class case. With multi-class workloads, it is possible to identify
a set of inner population mixes kA and kB where the energy consumption is
lower. Moreover, the lower is the number of class A jobs, the lower is the energy
consumption of the system. This is due to the power consumption values that
we used and to the time the jobs of class A spend into the system.

Depletion time can reach the minimum value when NA = 37 and NB = 43
(i.e. the dashed line). Nonetheless, configuration with NA = 30 and NB = 50
can provide better results when the inner population mix is highly unbalanced.

The main difference between depletion time in Fig. 6b and average response
time in Fig. 6c is between configurations 20-60 and 50-30. In particular, the
system has always a lower depletion time with NA = 20 and NB = 60. Instead,
the average response time of that configuration is slightly greater than the one
computed with NA = 50 and NB = 30.

ERP, ERWS and EJ are plotted in figures 6d, 6e and 6f respectively. All
the three metrics indicate a different configuration as the best one. More gener-
ally, ERWS and EJ agree on the good performance of the 40-40 configuration,
whereas ERP shows an improvement with NA = 30 and NB = 50.

Focusing in the 40-40 configuration (that seems to provide good results for
most of the considered cases) we also analyze how a different size of the FCR K
can affect the performance indexes. Results for ERP, ERWS and EJ are shown in
Fig. 7. Each curve corresponds to a different value ofK (i.e. K = {10, 20, 30, 40})
and they are plotted as a function of the inner population mix.

The ERP metric shown in Fig.7a indicates that the smaller is the FCR size,
the better will be the energy-response time trade-off of the system. In Fig. 7b,
ERWS seems to depends on both the FCR size and the considered inner popu-
lation mix. For example, when the workload is composed for the 60% by class
A jobs, it is better to work with K = 10. Instead, when there are only jobs of
class B the system should run with K = 30. EJ is shown in Fig. 7c. As opposed
to the ERP metric, the larger is the FCR size, the better are the performance
of the system. It is true especially when the system is strongly unbalanced.

Fig. 7d compares the minimum value that the previous analyzed metrics (i.e.
ERP, ERWS and EJ) can achieve for different FCR sizes K. In order to provide
a fair comparison of the considered metrics, all values are normalized in the [0, 1]
range according to the following rules. First we compute:

τ(K) = minβ(Vβ(K)), (10)

where β represents the inner population mix (i.e. kA = β · K and kB =
K − kA), and Vβ(K) is the value of the metric computed for specific β and K.
From Eq. 10, we compute the normalized value of each metric with the following
formula:

α(K) =
τ(K)−minK(τ(K))

maxK(τ(K)) −minK(τ(K))
. (11)

To that purpose, ERP has been defined as a function of both R (i.e. ERP (R) =
E[R] · E[E]) and T (i.e. ERP (T) = E[T] · E[E]). It is interesting to see that the

12 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

four metrics have different trends. Since ERP(R) is defined on R and ERP(T) on
T , the two metrics have different behaviors with respect to the number of jobs in
the FCR: the former is increasing and the latter is decreasing. Also EJ depends
on T (see eq. 4), thus it is decreasing too. Instead, ERWS has a parabolic shape.

Finally, in Fig. 8, we plot the length of the phases Φ(I), Φ(II), Φ(III) de-
scribed in Eq. 9. The considered configuration is the 40-40, with 20 jobs admitted
at the same time in the FCR. We divide Phase II and Phase III in three sub-
phases in order to distinguish among all the available possibilities (i.e. both class
A and class B jobs, only class A jobs or only class B jobs are in execution). Note
that, the sum of the duration of all the phases is equal to the depletion time for
that specific configuration. In general, it would be arguable that the longer is
the Phase I, the shorter is the depletion time of the system, since the scheduler
can only work in that phase. In Fig. 8, this can be seen when there are 12 jobs
of class A and 8 jobs of class B in the FCR. Unfortunately, this is not true for
all the configurations; for example, when there are 50 jobs of class A and 30 jobs
of class B in the whole system, the longest Phase I and the shortest depletion
time do not meet the same inner population mix. In that case, the system has
the longest Phase I when 95% of jobs in the FCR belong to class A, whereas the
shortest depletion time is reached when only the 70% of jobs in the FCR are of
class A.

5 Conclusion

In this paper we investigated the performance of models of a computational
paradigm consisting of a given pool of jobs of known size that must be executed
by a system having a limited capacity. The objective is to optimize the perfor-
mance so that the energy consumption required to execute a complete workload
is minimized. To this aim, with a multi-class workload we have considered a
scheduling policy that try to optimize the mix of jobs of the different classes
in concurrent execution. Future works will investigate different policies and will
focus on the analytical computation of the optimal point for a given metric. We
are also implementing specific benchmarks to validate our theoretical approach
against measurements.

References

1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Transactions on Algorithms (TALG) 3(4), 49 (2007)

2. Andrew, L.L., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed
scaling designs. In: ACM SIGMETRICS Performance Evaluation Review. vol. 38,
pp. 37–48. ACM (2010)

3. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power func-
tion. In: Proceedings of the twentieth annual ACM-SIAM symposium on discrete
algorithms. pp. 693–701. Society for Industrial and Applied Mathematics (2009)

Stochastic analysis of energy consumption in pool depletion systems. 13

4. Cerotti, D., Gribaudo, M., Piazzolla, P., Pinciroli, R., Serazzi, G.: Multi-class
queuing networks models for energy optimization. In: Proceedings of the 8th
International Conference on Performance Evaluation Methodologies and Tools.
pp. 98–105. VALUETOOLS ’14, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Bel-
gium (2014), http://dx.doi.org/10.4108/icst.Valuetools.2014.258214

5. Chen, D., Goldberg, G., Kahn, R., Kat, R., Meth, K.: Leveraging disk drive acous-
tic modes for power management. In: Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. pp. 1–9 (May 2010)

6. Diaz-Sanchez, D., Marin-Lopez, A., Almenarez, F., Sanchez-Guerrero, R., Arias,
P.: A distributed transcoding system for mobile video delivery. In: Wireless and
Mobile Networking Conference (WMNC), 2012 5th Joint IFIP. pp. 10–16 (Sept
2012)

7. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proceedings of the 34th Annual International Symposium on Com-
puter Architecture. pp. 13–23. ISCA ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1250662.1250665

8. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of
energy-performance trade-off for server farm management. Performance Evaluation
67(11), 1155–1171 (2010)

9. Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose microprocessors.
Solid-State Circuits, IEEE Journal of 31(9), 1277–1284 (1996)

10. Hyytiä, E., Righter, R., Aalto, S.: Task assignment in a heterogeneous server farm
with switching delays and general energy-aware cost structure. Performance Eval-
uation 75, 17–35 (2014)

11. Kang, C.W., Abbaspour, S., Pedram, M.: Buffer sizing for minimum energy-delay
product by using an approximating polynomial. In: Proceedings of the 13th ACM
Great Lakes symposium on VLSI. pp. 112–115. ACM (2003)

12. Kant, K.: A control scheme for batching dram requests to improve power effi-
ciency. In: Proceedings of the ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems. pp. 139–140. SIGMETRICS
’11, ACM (2011)

13. Kaxiras, S., Martonosi, M.: Computer architecture techniques for power-efficiency.
Synthesis Lectures on Computer Architecture 3(1), 1–207 (2008)

14. Muppala, J., Malhotra, M., Trivedi, K.: Markov dependability models of complex
systems: Analysis techniques. In: Ozekici, S. (ed.) Reliability and Maintenance
of Complex Systems, vol. 154, pp. 442–486. Springer Berlin Heidelberg (1996),
http://dx.doi.org/10.1007/978-3-662-03274-9_24

15. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. HotPower 8, 3–3 (2008)

16. Rosti, E., Schiavoni, F., Serazzi, G.: Queueing network models with two classes of
customers. In: Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 1997. MASCOTS’97., Proc. Fifth Int. Symp. on. pp. 229–234.
IEEE (1997)

14 D.Cerotti, M. Gribaudo, R Pinciroli, G. Serazzi

(a) Energy consumption (b) Depletion time

(c) Response time (d) ERP

(e) ERWS (f) EJ

Fig. 6: Performance indexes for the multi-class system with different outer pop-
ulation mixes. X-Y means NA = X and NB = Y .

Stochastic analysis of energy consumption in pool depletion systems. 15

(a) ERP (b) ERWS

(c) EJ (d) Normalized metrics

Fig. 7: Performance indexes for the multi-class system with different size of the
FCR.

Fig. 8: Length of each phase for the execution of a two-class workload with
nA = 40, nA = 40 and with K = 20 jobs in the FCR.

